Cargando…

Gravitational Backreaction Effects on the Holographic Phase Transition

We study radion stabilization in the compact Randall-Sundrum model by introducing a bulk scalar field, as in the Goldberger and Wise mechanism, but (partially) taking into account the backreactions from the scalar field on the metric. Our generalization reconciles the radion potential found by Goldb...

Descripción completa

Detalles Bibliográficos
Autores principales: Konstandin, Thomas, Nardini, Germano, Quiros, Mariano
Lenguaje:eng
Publicado: 2010
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.82.083513
http://cds.cern.ch/record/1277033
Descripción
Sumario:We study radion stabilization in the compact Randall-Sundrum model by introducing a bulk scalar field, as in the Goldberger and Wise mechanism, but (partially) taking into account the backreactions from the scalar field on the metric. Our generalization reconciles the radion potential found by Goldberger and Wise with the radion mass obtained with the so-called superpotential method where backreaction is fully considered. Moreover we study the holographic phase transition and its gravitational wave signals in this model. The improved control over backreactions opens up a large region in parameter space and leads, compared to former analysis, to weaker constraints on the rank N of the dual gauge theory. We conclude that, in the regime where the 1/N expansion is justified, the gravitational wave signal is detectable by LISA.