Cargando…

Hyperonenproduktion in C+C- und Si+Si-Kollisionen bei 158 GeV pro Nukleon

Ultrarelativistische Schwerionenstöße werden seit etwa 15 Jahren untersucht, um Kernmaterie unter extremen Bedingungen zu erforschen; in Kollisionen schwerer Atomkerne kann bei hohen Einschußenergien Kernmaterie stark komprimiert und aufgeheizt werden. Die Bedeutung dieser Experimente wird durch Ber...

Descripción completa

Detalles Bibliográficos
Autor principal: Kraus, Ingrid
Lenguaje:ger
Publicado: Frankfurt U. 2004
Materias:
Acceso en línea:http://cds.cern.ch/record/1289145
Descripción
Sumario:Ultrarelativistische Schwerionenstöße werden seit etwa 15 Jahren untersucht, um Kernmaterie unter extremen Bedingungen zu erforschen; in Kollisionen schwerer Atomkerne kann bei hohen Einschußenergien Kernmaterie stark komprimiert und aufgeheizt werden. Die Bedeutung dieser Experimente wird durch Berechnungen der Quanten-Chromo-Dynamik auf raumzeitlichen Gittern hervorgehoben, die bei ausreichend hoher Energiedichte eine Phase voraussagen, in der die Quarks nicht mehr in Hadronen gebunden sind, sondern zusammen mit den Gluonen ein partonisches System ausbilden. Ist das System hinreichend groß und equilibriert, wird es als Quark-Gluon-Plasma bezeichnet. Die als Signatur für das Überschreiten der Phasengrenze vorgeschlagene erhöhte Produktion Seltsamkeit tragender Teilchen wurde in der Gegenüberstellung von elementaren Proton+Proton-Interaktionen und Kern+Kern-Stößen experimentell über einen weiten Energiebereich bestätigt. Eine solche Überhöhung kann aber auch durch rein hadronische Phänomene hervorgerufen werden. So tritt beispielsweise in statistischen Modellen bereits in einem Hadrongas eine Seltsamkeitserhöhung aufgrund des Übergangs von einem kanonischen zu einem großkanonischen Ensemble mit steigender Systemgröße in Kern+Kern-Stößen auf. Das motivierte die Messung der Systemgrößenabhängigkeit der Seltsamkeitsproduktion bei einer Einschußenergie, bei der in den Stößen der größten Kerne die partonische Phase erreicht werden sollte, während Proton-Proton-Interaktionen überlicherweise als hadronische Systeme betrachtet werden. In Kollisionen von Kohlenstoff- und Siliziumkernen bei 158 GeV pro Nukleon, deren Untersuchung Gegenstand dieser Arbeit ist, kann möglicherweise die Umgebung der Phasengrenze abgetastet werden. Besondere Aufmerksamkeit gilt der Frage nach dem Mechanismus der Seltsamkeitsproduktion in diesen Reaktionen. Das Experiment wurde am SPS-Beschleuniger am CERN in Genf durchgeführt, erstmals wurden dort leichte Projektilkerne durch den Aufbruch des primären Bleistrahls an einem Produktionstarget erzeugt. Das Herzstück des NA49-Spektrometers, mit dem die Daten aufgezeichnet wurden, sind die vier großvolumigen Spurendriftkammern, die die große Akzeptanz ermöglichen. Die Lambda- und Antilambda-Hyperonen aus C+C und Si+Si Kollisionen werden anhand ihrer Zerfallstopologie rekonstruiert und ihre Impulsverteilungen über einen weiten Bereich gemessen; mit zusätzlichen Annahmen werden schließlich die totalen Multiplizitäten extrapoliert. Die Produktion der Hyperonen pro Pion ist im Vergleich zu p+p-Daten bereits in C+C-Reaktionen deutlich erhöht, in Si+Si--Kollisionen ist annähernd der Wert aus Pb+Pb-Stößen erreicht. Mehrere Ursachen für diese Beobachtung werden diskutiert und mögliche Interpretationen vorgeschlagen. Der Grad an chemischer Equilibration und die Lage des Ausfrier punktes im Phasendiagramm und im Vergleich zu anderen Stoßsystemen wird besprochen. Die Rapiditätsspektren der Lambda-Hyperonen entsprechen zunehmendem Stopping mit steigender Anzahl von Stößen pro Nukleon. Dadurch wird die Energie pro Nukleon im Feuerball erhöht, was zunehmende kinetische Energie der Teilchen und eine ansteigende Teilchenproduktion erzeugt. Die Verbreiterung der Transversalimpulsspektren mit der Systemgröße fügt sich in der Tat in das Bild anwachsenden radialen Flußes ein.