Cargando…

Development of an Eccentric CAM Based Active Pre-Alignment System for the CLIC Main Beam Quadrupole Magnet

CLIC (Compact Linear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities of today's particle accelerators. The demanding transverse and vertical beam sizes and emittance specifications are resulting in s...

Descripción completa

Detalles Bibliográficos
Autores principales: Lackner, F, Artoos, K, Collette, C, Mainaud Durand, H, Hauviller, C, Kemppinen, J, Leuxe, R
Formato: info:eu-repo/semantics/article
Lenguaje:eng
Publicado: 2010
Materias:
Acceso en línea:http://cds.cern.ch/record/1300251
Descripción
Sumario:CLIC (Compact Linear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities of today's particle accelerators. The demanding transverse and vertical beam sizes and emittance specifications are resulting in stringent alignment and a nanometre stability requirement. In the current feasibility study, the main beam quadrupole magnets have to be actively pre-aligned with a precision of 1 µm in 5 degrees of freedom (d.o.f.) before being mechanically stabilized to the nm scale above 1 Hz. This contribution describes the approach of performing this active pre-alignment based on an eccentric cam system. In order to limit the amplification of the vibration sources at resonant frequencies a sufficiently high Eigenfrequency is required. Therefore the contact region between cam and support was optimized for adequate stiffness based on the Hertzian theory. Furthermore, practical tests performed on a single degree of freedom mock-up will show the limitation factors and further improvements required for successful integration in a full scale quadrupole mock-up presently under design.