Cargando…
Black Strings, Black Rings and State-space Manifold
State-space geometry is considered, for diverse three and four parameter non-spherical horizon rotating black brane configurations, in string theory and $M$-theory. We have explicitly examined the case of unit Kaluza-Klein momentum $D_1D_5P$ black strings, circular strings, small black rings and bla...
Autores principales: | , |
---|---|
Formato: | info:eu-repo/semantics/article |
Lenguaje: | eng |
Publicado: |
Int. J. Mod. Phys. A
2010
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1142/S0217751X11054978 http://cds.cern.ch/record/1301331 |
Sumario: | State-space geometry is considered, for diverse three and four parameter non-spherical horizon rotating black brane configurations, in string theory and $M$-theory. We have explicitly examined the case of unit Kaluza-Klein momentum $D_1D_5P$ black strings, circular strings, small black rings and black supertubes. An investigation of the state-space pair correlation functions shows that there exist two classes of brane statistical configurations, {\it viz.}, the first category divulges a degenerate intrinsic equilibrium basis, while the second yields a non-degenerate, curved, intrinsic Riemannian geometry. Specifically, the solutions with finitely many branes expose that the two charged rotating $D_1D_5$ black strings and three charged rotating small black rings consort real degenerate state-space manifolds. Interestingly, arbitrary valued $M_5$-dipole charged rotating circular strings and Maldacena Strominger Witten black rings exhibit non-degenerate, positively curved, comprehensively regular state-space configurations. Furthermore, the state-space geometry of single bubbled rings admits a well-defined, positive definite, everywhere regular and curved intrinsic Riemannian manifold; except for the two finite values of conserved electric charge. We also discuss the implication and potential significance of this work for the physics of black holes in string theory. |
---|