Cargando…
Detector Physics of Resistive Plate Chambers
Resistive Plate Chambers (RPCs) are gaseous parallel plate avalanche detectors that implement electrodes made from a material with a high volume resistivity between 10^7 and 10^12 Ohm cm. Large area RPCs with 2mm single gaps operated in avalanche mode provide above 98% efficiency and a time resoluti...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Frankfurt U., Inst. Kernphys.
2003
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1303626 |
_version_ | 1780921111405395968 |
---|---|
author | Lippmann, Christian |
author_facet | Lippmann, Christian |
author_sort | Lippmann, Christian |
collection | CERN |
description | Resistive Plate Chambers (RPCs) are gaseous parallel plate avalanche detectors that implement electrodes made from a material with a high volume resistivity between 10^7 and 10^12 Ohm cm. Large area RPCs with 2mm single gaps operated in avalanche mode provide above 98% efficiency and a time resolution of around 1ns up to a flux of several kHz/cm2. These Trigger RPCs will, as an example, equip the muon detector system of the ATLAS experiment at CERN on an area of 3650m2 and with 355.000 independent read out channels. Timing RPCs with a gas gap of 0.2 to 0.3mm are widely used in multi gap configurations and provide 99% efficiency and time resolution down to 50ps. While their performance is comparable to existing scintillator-based Time-Of-Flight (TOF) technology, Timing RPCs feature a significantly, up to an order of magnitude, lower price per channel. They will for example equip the 176m2 TOF barrel of the ALICE experiment at CERN with 160.000 independent read out cells. RPCs were originally operated in streamer mode providing large signals which simplifies readout electronics and gap uniformity requirements. However, high rate applications and detector aging issues made the operation in avalanche mode popular. This was also facilitated by the development of new highly quenching C2F4H2-based gas mixtures with small contents of SF6. While the physics of streamers is difficult to study, the avalanche mode opened the possibility fo r a detailed simulation of the detector physics processes in RPCs. Even though RPCs were introduced in the early eighties and have been (will be) used in experiments, there are still disagreements about the explanation of several aspects of the RPC performance. The high efficiency of single gap RPCs would require a large ionization density of the used gases, which according to some authors contradicts measurements. Even in the case of a large ionization density the gas gain has to be extremely large, in order to arrive at the observed RPC efficiency. This raises other questions: A very strong space charge effect is required to explain the observed small avalanche charges around 1pC. Doubts have been raised whether an avalanche can progress under such extreme conditions without developing into a streamer. To overcome these difficulties, other processes, like the emission of an electron from the cathode, were suggested. Moreover, the shape of measured charge spectra of single gap RPCs differs largely from what is expected from the statistics of the primary ionization and the avalanche multiplication. In this thesis we discuss the detector physics processes of RPCs, from the primary ionization and the avalanche statistics to the signal induction and the read out electronics. We present Monte-Carlo simulation procedures that implement the described processes. While the fundament of the described model and some results were already published elsewhere [CERN-EP-2002-046], the subject of this thesis is the implementation of the space charge effect. We present analytic formulas for the electrostatic potential of a point charge in the gas gap of an RPC. These formulas were developed in collaboration with iv the University of Graz and were published in [CERN-OPEN-2001-074; Nucl. Instr. and Meth., A 489:439–443, 2002]. The simulation model presented in [CERN-EP-2002-046] is completed by the dynamic calculation of the space charge field using these formulas. Since the gas parameters like drift velocity and the Townsend and attachment coefficients depend on the electric field, they are calculated dynamically as well. The functional dependence of these parameters on the field is obtained with the simulation programs MAGBOLTZ and IMONTE. For the primary ionization parameters, we use the values that are predicted by the program HEED. While the described procedure only simulates the longitudinal avalanche development towards the anode of the RPC, we also present more dimensional models that allow a careful study of the transverse repulsive and attractive forces of the space charge fields, and of the consequences for the avalanche propagation. We shall show that the efficiencies of single gap Timing RPCs is indeed explained by the high primary ionization density (about 9.5/cm as predicted by HEED) and a large effective Townsend coefficient (around 113/mm as predicte d by IMONTE). We show that the space charge field reaches the same magnitude as the applied electric field in avalanches at large gas gain. This strong space charge effect effectively suppresses large values for the avalanche charges. The shape of the simulated charge spectra is very similar to the measurements. Also the simulated average charges are close to the experimental results. RPCs are operated in a strong space charge regime over a large range of applied voltage, contrary to wire chambers. We apply only standard detector physics simulations to RPCs. The performance of Timing and Trigger RPCs is well reproduced by our simulations. |
id | cern-1303626 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2003 |
publisher | Frankfurt U., Inst. Kernphys. |
record_format | invenio |
spelling | cern-13036262019-09-30T06:29:59Zhttp://cds.cern.ch/record/1303626engLippmann, ChristianDetector Physics of Resistive Plate ChambersDetectors and Experimental TechniquesResistive Plate Chambers (RPCs) are gaseous parallel plate avalanche detectors that implement electrodes made from a material with a high volume resistivity between 10^7 and 10^12 Ohm cm. Large area RPCs with 2mm single gaps operated in avalanche mode provide above 98% efficiency and a time resolution of around 1ns up to a flux of several kHz/cm2. These Trigger RPCs will, as an example, equip the muon detector system of the ATLAS experiment at CERN on an area of 3650m2 and with 355.000 independent read out channels. Timing RPCs with a gas gap of 0.2 to 0.3mm are widely used in multi gap configurations and provide 99% efficiency and time resolution down to 50ps. While their performance is comparable to existing scintillator-based Time-Of-Flight (TOF) technology, Timing RPCs feature a significantly, up to an order of magnitude, lower price per channel. They will for example equip the 176m2 TOF barrel of the ALICE experiment at CERN with 160.000 independent read out cells. RPCs were originally operated in streamer mode providing large signals which simplifies readout electronics and gap uniformity requirements. However, high rate applications and detector aging issues made the operation in avalanche mode popular. This was also facilitated by the development of new highly quenching C2F4H2-based gas mixtures with small contents of SF6. While the physics of streamers is difficult to study, the avalanche mode opened the possibility fo r a detailed simulation of the detector physics processes in RPCs. Even though RPCs were introduced in the early eighties and have been (will be) used in experiments, there are still disagreements about the explanation of several aspects of the RPC performance. The high efficiency of single gap RPCs would require a large ionization density of the used gases, which according to some authors contradicts measurements. Even in the case of a large ionization density the gas gain has to be extremely large, in order to arrive at the observed RPC efficiency. This raises other questions: A very strong space charge effect is required to explain the observed small avalanche charges around 1pC. Doubts have been raised whether an avalanche can progress under such extreme conditions without developing into a streamer. To overcome these difficulties, other processes, like the emission of an electron from the cathode, were suggested. Moreover, the shape of measured charge spectra of single gap RPCs differs largely from what is expected from the statistics of the primary ionization and the avalanche multiplication. In this thesis we discuss the detector physics processes of RPCs, from the primary ionization and the avalanche statistics to the signal induction and the read out electronics. We present Monte-Carlo simulation procedures that implement the described processes. While the fundament of the described model and some results were already published elsewhere [CERN-EP-2002-046], the subject of this thesis is the implementation of the space charge effect. We present analytic formulas for the electrostatic potential of a point charge in the gas gap of an RPC. These formulas were developed in collaboration with iv the University of Graz and were published in [CERN-OPEN-2001-074; Nucl. Instr. and Meth., A 489:439–443, 2002]. The simulation model presented in [CERN-EP-2002-046] is completed by the dynamic calculation of the space charge field using these formulas. Since the gas parameters like drift velocity and the Townsend and attachment coefficients depend on the electric field, they are calculated dynamically as well. The functional dependence of these parameters on the field is obtained with the simulation programs MAGBOLTZ and IMONTE. For the primary ionization parameters, we use the values that are predicted by the program HEED. While the described procedure only simulates the longitudinal avalanche development towards the anode of the RPC, we also present more dimensional models that allow a careful study of the transverse repulsive and attractive forces of the space charge fields, and of the consequences for the avalanche propagation. We shall show that the efficiencies of single gap Timing RPCs is indeed explained by the high primary ionization density (about 9.5/cm as predicted by HEED) and a large effective Townsend coefficient (around 113/mm as predicte d by IMONTE). We show that the space charge field reaches the same magnitude as the applied electric field in avalanches at large gas gain. This strong space charge effect effectively suppresses large values for the avalanche charges. The shape of the simulated charge spectra is very similar to the measurements. Also the simulated average charges are close to the experimental results. RPCs are operated in a strong space charge regime over a large range of applied voltage, contrary to wire chambers. We apply only standard detector physics simulations to RPCs. The performance of Timing and Trigger RPCs is well reproduced by our simulations.Frankfurt U., Inst. Kernphys.CERN-THESIS-2003-035oai:cds.cern.ch:13036262003 |
spellingShingle | Detectors and Experimental Techniques Lippmann, Christian Detector Physics of Resistive Plate Chambers |
title | Detector Physics of Resistive Plate Chambers |
title_full | Detector Physics of Resistive Plate Chambers |
title_fullStr | Detector Physics of Resistive Plate Chambers |
title_full_unstemmed | Detector Physics of Resistive Plate Chambers |
title_short | Detector Physics of Resistive Plate Chambers |
title_sort | detector physics of resistive plate chambers |
topic | Detectors and Experimental Techniques |
url | http://cds.cern.ch/record/1303626 |
work_keys_str_mv | AT lippmannchristian detectorphysicsofresistiveplatechambers |