Cargando…

Brane singularities and their avoidance

The singularity structure and the corresponding asymptotic behavior of a 3-brane coupled to a scalar field or to a perfect fluid in a five-dimensional bulk is analyzed in full generality using the method of asymptotic splittings. In the case of the scalar field, it is shown that the collapse singula...

Descripción completa

Detalles Bibliográficos
Autores principales: Antoniadis, Ignatios, Cotsakis, Spiros, Klaoudatou, Ifigeneia
Formato: info:eu-repo/semantics/article
Lenguaje:eng
Publicado: Class. Quantum Gravity 2010
Materias:
Acceso en línea:https://dx.doi.org/10.1088/0264-9381/27/23/235018
http://cds.cern.ch/record/1303738
_version_ 1780921113146032128
author Antoniadis, Ignatios
Cotsakis, Spiros
Klaoudatou, Ifigeneia
author_facet Antoniadis, Ignatios
Cotsakis, Spiros
Klaoudatou, Ifigeneia
author_sort Antoniadis, Ignatios
collection CERN
description The singularity structure and the corresponding asymptotic behavior of a 3-brane coupled to a scalar field or to a perfect fluid in a five-dimensional bulk is analyzed in full generality using the method of asymptotic splittings. In the case of the scalar field, it is shown that the collapse singularity at a finite distance from the brane can be avoided only at the expense of making the brane world-volume positively or negatively curved. In the case where the bulk field content is parametrized by an analogue of perfect fluid with an arbitrary equation of state P=\gamma\rho between the `pressure' P and the `density' \rho, our results depend crucially on the constant fluid parameter \gamma: (i) For \gamma>-1/2, the flat brane solution suffers from a collapse singularity at finite distance, that disappears in the curved case. (ii) For \gamma<-1, the singularity cannot be avoided and it becomes of the big rip type for a flat brane. (iii) For -1<\gamma< or = -1/2, the surprising result is found that while the curved brane solution is singular, the flat brane is not, opening the possibility for a revival of the self-tuning proposal.
format info:eu-repo/semantics/article
id cern-1303738
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2010
publisher Class. Quantum Gravity
record_format invenio
spelling cern-13037382023-03-15T19:12:06Z doi:10.1088/0264-9381/27/23/235018 http://cds.cern.ch/record/1303738 eng Antoniadis, Ignatios Cotsakis, Spiros Klaoudatou, Ifigeneia Brane singularities and their avoidance General Relativity and Cosmology The singularity structure and the corresponding asymptotic behavior of a 3-brane coupled to a scalar field or to a perfect fluid in a five-dimensional bulk is analyzed in full generality using the method of asymptotic splittings. In the case of the scalar field, it is shown that the collapse singularity at a finite distance from the brane can be avoided only at the expense of making the brane world-volume positively or negatively curved. In the case where the bulk field content is parametrized by an analogue of perfect fluid with an arbitrary equation of state P=\gamma\rho between the `pressure' P and the `density' \rho, our results depend crucially on the constant fluid parameter \gamma: (i) For \gamma>-1/2, the flat brane solution suffers from a collapse singularity at finite distance, that disappears in the curved case. (ii) For \gamma<-1, the singularity cannot be avoided and it becomes of the big rip type for a flat brane. (iii) For -1<\gamma< or = -1/2, the surprising result is found that while the curved brane solution is singular, the flat brane is not, opening the possibility for a revival of the self-tuning proposal. The singularity structure and the corresponding asymptotic behavior of a 3-brane coupled to a scalar field or to a perfect fluid in a five-dimensional bulk is analyzed in full generality using the method of asymptotic splittings. In the case of the scalar field, it is shown that the collapse singularity at a finite distance from the brane can be avoided only at the expense of making the brane world-volume positively or negatively curved. In the case where the bulk field content is parametrized by an analogue of perfect fluid with an arbitrary equation of state P=\gamma\rho between the `pressure' P and the `density' \rho, our results depend crucially on the constant fluid parameter \gamma: (i) For \gamma>-1/2, the flat brane solution suffers from a collapse singularity at finite distance, that disappears in the curved case. (ii) For \gamma<-1, the singularity cannot be avoided and it becomes of the big rip type for a flat brane. (iii) For -1<\gamma< or = -1/2, the surprising result is found that while the curved brane solution is singular, the flat brane is not, opening the possibility for a revival of the self-tuning proposal. info:eu-repo/grantAgreement/EC/FP7/226371 info:eu-repo/semantics/openAccess Education Level info:eu-repo/semantics/article http://cds.cern.ch/record/1303738 Class. Quantum Gravity Class. Quantum Gravity, (2010) pp. 235018 2010-11-01
spellingShingle General Relativity and Cosmology
Antoniadis, Ignatios
Cotsakis, Spiros
Klaoudatou, Ifigeneia
Brane singularities and their avoidance
title Brane singularities and their avoidance
title_full Brane singularities and their avoidance
title_fullStr Brane singularities and their avoidance
title_full_unstemmed Brane singularities and their avoidance
title_short Brane singularities and their avoidance
title_sort brane singularities and their avoidance
topic General Relativity and Cosmology
url https://dx.doi.org/10.1088/0264-9381/27/23/235018
http://cds.cern.ch/record/1303738
http://cds.cern.ch/record/1303738
work_keys_str_mv AT antoniadisignatios branesingularitiesandtheiravoidance
AT cotsakisspiros branesingularitiesandtheiravoidance
AT klaoudatouifigeneia branesingularitiesandtheiravoidance