Cargando…

Topics in Cubic Special Geometry

We reconsider the sub-leading quantum perturbative corrections to N=2 cubic special Kaehler geometries. Imposing the invariance under axion-shifts, all such corrections (but the imaginary constant one) can be introduced or removed through suitable, lower unitriangular symplectic transformations, dub...

Descripción completa

Detalles Bibliográficos
Autores principales: Bellucci, Stefano, Marrani, Alessio, Roychowdhury, Raju
Formato: info:eu-repo/semantics/article
Lenguaje:eng
Publicado: J. Math. Phys. 2010
Materias:
Acceso en línea:https://dx.doi.org/10.1063/1.3622851
http://cds.cern.ch/record/1304543
Descripción
Sumario:We reconsider the sub-leading quantum perturbative corrections to N=2 cubic special Kaehler geometries. Imposing the invariance under axion-shifts, all such corrections (but the imaginary constant one) can be introduced or removed through suitable, lower unitriangular symplectic transformations, dubbed Peccei-Quinn (PQ) transformations. Since PQ transformations do not belong to the d=4 U-duality group G4, in symmetric cases they generally have a non-trivial action on the unique quartic invariant polynomial I4 of the charge representation R of G4. This leads to interesting phenomena in relation to theory of extremal black hole attractors; namely, the possibility to make transitions between different charge orbits of R, with corresponding change of the supersymmetry properties of the supported attractor solutions. Furthermore, a suitable action of PQ transformations can also set I4 to zero, or vice versa it can generate a non-vanishing I4: this corresponds to transitions between "large" and "small" charge orbits, which we classify in some detail within the "special coordinates" symplectic frame. Finally, after a brief account of the action of PQ transformations on the recently established correspondence between Cayley's hyperdeterminant and elliptic curves, we derive an equivalent, alternative expression of I4, with relevant application to black hole entropy.