Cargando…

Engineering Design of a Multipurpose X-band Accelerating Structure

Both FEL projects, SwissFEL and Fermi-Elettra each require an X-band RF accelerating structure for optimal bunch compression at the respective injectors. As the CLIC project is pursuing a program for producing and testing the X-band high-gradient RF structures, a collaboration between PSI, Elettra a...

Descripción completa

Detalles Bibliográficos
Autores principales: Gudkov, Dmitry, Riddone, Germana, Samoshkin, Alexander, Zennaro, Riccardo, Dehler, Micha, Raguin, Jean-Yves
Lenguaje:eng
Publicado: 2010
Materias:
Acceso en línea:http://cds.cern.ch/record/1309173
Descripción
Sumario:Both FEL projects, SwissFEL and Fermi-Elettra each require an X-band RF accelerating structure for optimal bunch compression at the respective injectors. As the CLIC project is pursuing a program for producing and testing the X-band high-gradient RF structures, a collaboration between PSI, Elettra and CERN has been established to build a multipurpose X-band accelerating structure. This paper focuses on its engineering design, which is based on the disked cells jointed together by diffusion bonding. Vacuum brazing and laser beam welding is used for auxiliary components. The accelerating structure consists of two coupler subassemblies, 73 disks and includes a wakefield monitor and diagnostic waveguides. The engineering study includes the external cooling system, consisting of two parallel cooling circuits and an RF tuning system, which allows phase advance tuning of the cell by deforming the outer wall. The engineering solution for the installation and sealing of the wake field monitor feed-through devices that are integrated in the accelerating structure are presented