Cargando…

Closed expressions for $\int_{0}^{1} t^{-1} log^{n-1}t log^{p}(1 - t) dt$

Closed expressions for the integral integral /sub 0//sup 1/ t/sup -1/ log/sup n-1/t log/sup p/(1-t)dt, whose general form is given elsewhere, are listed for n=1(1)9, p=1(1)9. A formula is derived which allows an easy evaluation of these expressions by formula manipulation on a computer. The majority...

Descripción completa

Detalles Bibliográficos
Autor principal: Kölbig, Kurt Siegfried
Lenguaje:eng
Publicado: 1981
Materias:
Acceso en línea:https://dx.doi.org/10.2307/2007341
http://cds.cern.ch/record/131491
_version_ 1780879380820525056
author Kölbig, Kurt Siegfried
author_facet Kölbig, Kurt Siegfried
author_sort Kölbig, Kurt Siegfried
collection CERN
description Closed expressions for the integral integral /sub 0//sup 1/ t/sup -1/ log/sup n-1/t log/sup p/(1-t)dt, whose general form is given elsewhere, are listed for n=1(1)9, p=1(1)9. A formula is derived which allows an easy evaluation of these expressions by formula manipulation on a computer. The majority of the above expressions are given in a microfiche supplement to the paper.
id cern-131491
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1981
record_format invenio
spelling cern-1314912019-09-30T06:29:59Zdoi:10.2307/2007341http://cds.cern.ch/record/131491engKölbig, Kurt SiegfriedClosed expressions for $\int_{0}^{1} t^{-1} log^{n-1}t log^{p}(1 - t) dt$Mathematical Physics and MathematicsClosed expressions for the integral integral /sub 0//sup 1/ t/sup -1/ log/sup n-1/t log/sup p/(1-t)dt, whose general form is given elsewhere, are listed for n=1(1)9, p=1(1)9. A formula is derived which allows an easy evaluation of these expressions by formula manipulation on a computer. The majority of the above expressions are given in a microfiche supplement to the paper.CERN-DD-81-8oai:cds.cern.ch:1314911981-09-02
spellingShingle Mathematical Physics and Mathematics
Kölbig, Kurt Siegfried
Closed expressions for $\int_{0}^{1} t^{-1} log^{n-1}t log^{p}(1 - t) dt$
title Closed expressions for $\int_{0}^{1} t^{-1} log^{n-1}t log^{p}(1 - t) dt$
title_full Closed expressions for $\int_{0}^{1} t^{-1} log^{n-1}t log^{p}(1 - t) dt$
title_fullStr Closed expressions for $\int_{0}^{1} t^{-1} log^{n-1}t log^{p}(1 - t) dt$
title_full_unstemmed Closed expressions for $\int_{0}^{1} t^{-1} log^{n-1}t log^{p}(1 - t) dt$
title_short Closed expressions for $\int_{0}^{1} t^{-1} log^{n-1}t log^{p}(1 - t) dt$
title_sort closed expressions for $\int_{0}^{1} t^{-1} log^{n-1}t log^{p}(1 - t) dt$
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.2307/2007341
http://cds.cern.ch/record/131491
work_keys_str_mv AT kolbigkurtsiegfried closedexpressionsforint01t1logn1tlogp1tdt