Cargando…
Closed expressions for $\int_{0}^{1} t^{-1} log^{n-1}t log^{p}(1 - t) dt$
Closed expressions for the integral integral /sub 0//sup 1/ t/sup -1/ log/sup n-1/t log/sup p/(1-t)dt, whose general form is given elsewhere, are listed for n=1(1)9, p=1(1)9. A formula is derived which allows an easy evaluation of these expressions by formula manipulation on a computer. The majority...
Autor principal: | Kölbig, Kurt Siegfried |
---|---|
Lenguaje: | eng |
Publicado: |
1981
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.2307/2007341 http://cds.cern.ch/record/131491 |
Ejemplares similares
-
On the integral $\int_{0}^{\infty} e^{-\mu t}t^{\nu-1} log^{m} t dt$
por: Kölbig, Kurt Siegfried
Publicado: (1982) -
On the integral $\int_{0}^{\pi/2} log^{n} cos x log^{p} sin x dx$
por: Kölbig, Kurt Siegfried
Publicado: (1982) -
On the integral $\int_{0}^{\infty}x^{\nu-1}(1 + \beta x)^{-\lambda}ln^{m}x dx$
por: Kölbig, Kurt Siegfried
Publicado: (1986) -
A program for computing the conical functions of the first kind $P^{m}_{-1/2+i\tau}(x)$ for $m = 0$ and $m = 1$
por: Kölbig, Kurt Siegfried
Publicado: (1981) -
Log-linear models
por: Christensen, Ronald
Publicado: (1990)