Cargando…
A new approach in modeling the response of RPC detectors
The response of RPC detectors is highly sensitive to environmental variables. A novel approach is presented to model the response of RPC detectors in a variety of experimental conditions. The algorithm, based on Artificial Neural Networks, has been developed and tested on the CMS RPC gas gain monito...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nima.2010.09.172 http://cds.cern.ch/record/1317992 |
_version_ | 1780921419845074944 |
---|---|
author | Benussi, L Bianco, S Colafranceschi, S Fabbri, F L Giardoni, M Passamonti, L Piccolo, D Pierluigi, D Russo, A Saviano, G Buontempo, S Cimmino, A de Gruttola, M Fabozzi, F Iorio, A O M Lista, L Paolucci, P Baesso, P Belli, G Pagano, D Ratti, S P Vicini, A Vitulo, P Viviani, C Sharma, A Bhattacharyya, A K |
author_facet | Benussi, L Bianco, S Colafranceschi, S Fabbri, F L Giardoni, M Passamonti, L Piccolo, D Pierluigi, D Russo, A Saviano, G Buontempo, S Cimmino, A de Gruttola, M Fabozzi, F Iorio, A O M Lista, L Paolucci, P Baesso, P Belli, G Pagano, D Ratti, S P Vicini, A Vitulo, P Viviani, C Sharma, A Bhattacharyya, A K |
author_sort | Benussi, L |
collection | CERN |
description | The response of RPC detectors is highly sensitive to environmental variables. A novel approach is presented to model the response of RPC detectors in a variety of experimental conditions. The algorithm, based on Artificial Neural Networks, has been developed and tested on the CMS RPC gas gain monitoring system during commissioning. |
id | cern-1317992 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2010 |
record_format | invenio |
spelling | cern-13179922019-09-30T06:29:59Zdoi:10.1016/j.nima.2010.09.172http://cds.cern.ch/record/1317992engBenussi, LBianco, SColafranceschi, SFabbri, F LGiardoni, MPassamonti, LPiccolo, DPierluigi, DRusso, ASaviano, GBuontempo, SCimmino, Ade Gruttola, MFabozzi, FIorio, A O MLista, LPaolucci, PBaesso, PBelli, GPagano, DRatti, S PVicini, AVitulo, PViviani, CSharma, ABhattacharyya, A KA new approach in modeling the response of RPC detectorsDetectors and Experimental TechniquesThe response of RPC detectors is highly sensitive to environmental variables. A novel approach is presented to model the response of RPC detectors in a variety of experimental conditions. The algorithm, based on Artificial Neural Networks, has been developed and tested on the CMS RPC gas gain monitoring system during commissioning.arXiv:1012.5508oai:cds.cern.ch:13179922010-12-30 |
spellingShingle | Detectors and Experimental Techniques Benussi, L Bianco, S Colafranceschi, S Fabbri, F L Giardoni, M Passamonti, L Piccolo, D Pierluigi, D Russo, A Saviano, G Buontempo, S Cimmino, A de Gruttola, M Fabozzi, F Iorio, A O M Lista, L Paolucci, P Baesso, P Belli, G Pagano, D Ratti, S P Vicini, A Vitulo, P Viviani, C Sharma, A Bhattacharyya, A K A new approach in modeling the response of RPC detectors |
title | A new approach in modeling the response of RPC detectors |
title_full | A new approach in modeling the response of RPC detectors |
title_fullStr | A new approach in modeling the response of RPC detectors |
title_full_unstemmed | A new approach in modeling the response of RPC detectors |
title_short | A new approach in modeling the response of RPC detectors |
title_sort | new approach in modeling the response of rpc detectors |
topic | Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1016/j.nima.2010.09.172 http://cds.cern.ch/record/1317992 |
work_keys_str_mv | AT benussil anewapproachinmodelingtheresponseofrpcdetectors AT biancos anewapproachinmodelingtheresponseofrpcdetectors AT colafranceschis anewapproachinmodelingtheresponseofrpcdetectors AT fabbrifl anewapproachinmodelingtheresponseofrpcdetectors AT giardonim anewapproachinmodelingtheresponseofrpcdetectors AT passamontil anewapproachinmodelingtheresponseofrpcdetectors AT piccolod anewapproachinmodelingtheresponseofrpcdetectors AT pierluigid anewapproachinmodelingtheresponseofrpcdetectors AT russoa anewapproachinmodelingtheresponseofrpcdetectors AT savianog anewapproachinmodelingtheresponseofrpcdetectors AT buontempos anewapproachinmodelingtheresponseofrpcdetectors AT cimminoa anewapproachinmodelingtheresponseofrpcdetectors AT degruttolam anewapproachinmodelingtheresponseofrpcdetectors AT fabozzif anewapproachinmodelingtheresponseofrpcdetectors AT iorioaom anewapproachinmodelingtheresponseofrpcdetectors AT listal anewapproachinmodelingtheresponseofrpcdetectors AT paoluccip anewapproachinmodelingtheresponseofrpcdetectors AT baessop anewapproachinmodelingtheresponseofrpcdetectors AT bellig anewapproachinmodelingtheresponseofrpcdetectors AT paganod anewapproachinmodelingtheresponseofrpcdetectors AT rattisp anewapproachinmodelingtheresponseofrpcdetectors AT vicinia anewapproachinmodelingtheresponseofrpcdetectors AT vitulop anewapproachinmodelingtheresponseofrpcdetectors AT vivianic anewapproachinmodelingtheresponseofrpcdetectors AT sharmaa anewapproachinmodelingtheresponseofrpcdetectors AT bhattacharyyaak anewapproachinmodelingtheresponseofrpcdetectors AT benussil newapproachinmodelingtheresponseofrpcdetectors AT biancos newapproachinmodelingtheresponseofrpcdetectors AT colafranceschis newapproachinmodelingtheresponseofrpcdetectors AT fabbrifl newapproachinmodelingtheresponseofrpcdetectors AT giardonim newapproachinmodelingtheresponseofrpcdetectors AT passamontil newapproachinmodelingtheresponseofrpcdetectors AT piccolod newapproachinmodelingtheresponseofrpcdetectors AT pierluigid newapproachinmodelingtheresponseofrpcdetectors AT russoa newapproachinmodelingtheresponseofrpcdetectors AT savianog newapproachinmodelingtheresponseofrpcdetectors AT buontempos newapproachinmodelingtheresponseofrpcdetectors AT cimminoa newapproachinmodelingtheresponseofrpcdetectors AT degruttolam newapproachinmodelingtheresponseofrpcdetectors AT fabozzif newapproachinmodelingtheresponseofrpcdetectors AT iorioaom newapproachinmodelingtheresponseofrpcdetectors AT listal newapproachinmodelingtheresponseofrpcdetectors AT paoluccip newapproachinmodelingtheresponseofrpcdetectors AT baessop newapproachinmodelingtheresponseofrpcdetectors AT bellig newapproachinmodelingtheresponseofrpcdetectors AT paganod newapproachinmodelingtheresponseofrpcdetectors AT rattisp newapproachinmodelingtheresponseofrpcdetectors AT vicinia newapproachinmodelingtheresponseofrpcdetectors AT vitulop newapproachinmodelingtheresponseofrpcdetectors AT vivianic newapproachinmodelingtheresponseofrpcdetectors AT sharmaa newapproachinmodelingtheresponseofrpcdetectors AT bhattacharyyaak newapproachinmodelingtheresponseofrpcdetectors |