Cargando…
Perturbative analysis of the gradient flow in non-abelian gauge theories
The gradient flow in non-abelian gauge theories on R^4 is defined by a local diffusion equation that evolves the gauge field as a function of the flow time in a gauge-covariant manner. Similarly to the case of the Langevin equation, the correlation functions of the time-dependent field can be expand...
Autores principales: | Lüscher, Martin, Weisz, Peter |
---|---|
Lenguaje: | eng |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP02(2011)051 http://cds.cern.ch/record/1319500 |
Ejemplares similares
-
Non-perturbative contribution to total cross-sections in non-Abelian gauge theories
por: Khoze, V V, et al.
Publicado: (1991) -
Difficulties in fixing the gauge in non-Abelian gauge theories
por: Sciuto, S
Publicado: (1979) -
Non-Abelian gauge theory in two dimensions
por: Frishman, Y
Publicado: (1975) -
The Schrödinger functional: a renormalization probe for non-abelian gauge theories
por: Luscher, Martin, et al.
Publicado: (1992) -
Non-Abelian gauge theories in 2+1 dimensions
por: Philipsen, O
Publicado: (2002)