Cargando…

Freudenthal Duality and Generalized Special Geometry

Freudenthal duality, introduced in L. Borsten, D. Dahanayake, M. J. Duff and W. Rubens, Phys.Rev. D80, 026003 (2009), and defined as an anti-involution on the dyonic charge vector in d = 4 space-time dimensions for those dualities admitting a quartic invariant, is proved to be a symmetry not only of...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferrara, Sergio, Marrani, Alessio, Yeranyan, Armen
Formato: info:eu-repo/semantics/article
Lenguaje:eng
Publicado: Phys. Lett. B 2011
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.physletb.2011.06.031
http://cds.cern.ch/record/1331909
_version_ 1780921756408610816
author Ferrara, Sergio
Marrani, Alessio
Yeranyan, Armen
author_facet Ferrara, Sergio
Marrani, Alessio
Yeranyan, Armen
author_sort Ferrara, Sergio
collection CERN
description Freudenthal duality, introduced in L. Borsten, D. Dahanayake, M. J. Duff and W. Rubens, Phys.Rev. D80, 026003 (2009), and defined as an anti-involution on the dyonic charge vector in d = 4 space-time dimensions for those dualities admitting a quartic invariant, is proved to be a symmetry not only of the classical Bekenstein-Hawking entropy but also of the critical points of the black hole potential. Furthermore, Freudenthal duality is extended to any generalized special geometry, thus encompassing all N > 2 supergravities, as well as N = 2 generic special geometry, not necessarily having a coset space structure.
format info:eu-repo/semantics/article
id cern-1331909
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2011
publisher Phys. Lett. B
record_format invenio
spelling cern-13319092019-09-30T06:29:59Z doi:10.1016/j.physletb.2011.06.031 http://cds.cern.ch/record/1331909 eng Ferrara, Sergio Marrani, Alessio Yeranyan, Armen Freudenthal Duality and Generalized Special Geometry Particle Physics - Theory Freudenthal duality, introduced in L. Borsten, D. Dahanayake, M. J. Duff and W. Rubens, Phys.Rev. D80, 026003 (2009), and defined as an anti-involution on the dyonic charge vector in d = 4 space-time dimensions for those dualities admitting a quartic invariant, is proved to be a symmetry not only of the classical Bekenstein-Hawking entropy but also of the critical points of the black hole potential. Furthermore, Freudenthal duality is extended to any generalized special geometry, thus encompassing all N > 2 supergravities, as well as N = 2 generic special geometry, not necessarily having a coset space structure. info:eu-repo/grantAgreement/EC/FP7/226455 info:eu-repo/semantics/openAccess Education Level info:eu-repo/semantics/article http://cds.cern.ch/record/1331909 Phys. Lett. B Phys. Lett. B, 5 (2011) pp. 640-645 2011-02-25
spellingShingle Particle Physics - Theory
Ferrara, Sergio
Marrani, Alessio
Yeranyan, Armen
Freudenthal Duality and Generalized Special Geometry
title Freudenthal Duality and Generalized Special Geometry
title_full Freudenthal Duality and Generalized Special Geometry
title_fullStr Freudenthal Duality and Generalized Special Geometry
title_full_unstemmed Freudenthal Duality and Generalized Special Geometry
title_short Freudenthal Duality and Generalized Special Geometry
title_sort freudenthal duality and generalized special geometry
topic Particle Physics - Theory
url https://dx.doi.org/10.1016/j.physletb.2011.06.031
http://cds.cern.ch/record/1331909
http://cds.cern.ch/record/1331909
work_keys_str_mv AT ferrarasergio freudenthaldualityandgeneralizedspecialgeometry
AT marranialessio freudenthaldualityandgeneralizedspecialgeometry
AT yeranyanarmen freudenthaldualityandgeneralizedspecialgeometry