Cargando…
Freudenthal Duality and Generalized Special Geometry
Freudenthal duality, introduced in L. Borsten, D. Dahanayake, M. J. Duff and W. Rubens, Phys.Rev. D80, 026003 (2009), and defined as an anti-involution on the dyonic charge vector in d = 4 space-time dimensions for those dualities admitting a quartic invariant, is proved to be a symmetry not only of...
Autores principales: | , , |
---|---|
Formato: | info:eu-repo/semantics/article |
Lenguaje: | eng |
Publicado: |
Phys. Lett. B
2011
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.physletb.2011.06.031 http://cds.cern.ch/record/1331909 |
_version_ | 1780921756408610816 |
---|---|
author | Ferrara, Sergio Marrani, Alessio Yeranyan, Armen |
author_facet | Ferrara, Sergio Marrani, Alessio Yeranyan, Armen |
author_sort | Ferrara, Sergio |
collection | CERN |
description | Freudenthal duality, introduced in L. Borsten, D. Dahanayake, M. J. Duff and W. Rubens, Phys.Rev. D80, 026003 (2009), and defined as an anti-involution on the dyonic charge vector in d = 4 space-time dimensions for those dualities admitting a quartic invariant, is proved to be a symmetry not only of the classical Bekenstein-Hawking entropy but also of the critical points of the black hole potential. Furthermore, Freudenthal duality is extended to any generalized special geometry, thus encompassing all N > 2 supergravities, as well as N = 2 generic special geometry, not necessarily having a coset space structure. |
format | info:eu-repo/semantics/article |
id | cern-1331909 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2011 |
publisher | Phys. Lett. B |
record_format | invenio |
spelling | cern-13319092019-09-30T06:29:59Z doi:10.1016/j.physletb.2011.06.031 http://cds.cern.ch/record/1331909 eng Ferrara, Sergio Marrani, Alessio Yeranyan, Armen Freudenthal Duality and Generalized Special Geometry Particle Physics - Theory Freudenthal duality, introduced in L. Borsten, D. Dahanayake, M. J. Duff and W. Rubens, Phys.Rev. D80, 026003 (2009), and defined as an anti-involution on the dyonic charge vector in d = 4 space-time dimensions for those dualities admitting a quartic invariant, is proved to be a symmetry not only of the classical Bekenstein-Hawking entropy but also of the critical points of the black hole potential. Furthermore, Freudenthal duality is extended to any generalized special geometry, thus encompassing all N > 2 supergravities, as well as N = 2 generic special geometry, not necessarily having a coset space structure. info:eu-repo/grantAgreement/EC/FP7/226455 info:eu-repo/semantics/openAccess Education Level info:eu-repo/semantics/article http://cds.cern.ch/record/1331909 Phys. Lett. B Phys. Lett. B, 5 (2011) pp. 640-645 2011-02-25 |
spellingShingle | Particle Physics - Theory Ferrara, Sergio Marrani, Alessio Yeranyan, Armen Freudenthal Duality and Generalized Special Geometry |
title | Freudenthal Duality and Generalized Special Geometry |
title_full | Freudenthal Duality and Generalized Special Geometry |
title_fullStr | Freudenthal Duality and Generalized Special Geometry |
title_full_unstemmed | Freudenthal Duality and Generalized Special Geometry |
title_short | Freudenthal Duality and Generalized Special Geometry |
title_sort | freudenthal duality and generalized special geometry |
topic | Particle Physics - Theory |
url | https://dx.doi.org/10.1016/j.physletb.2011.06.031 http://cds.cern.ch/record/1331909 http://cds.cern.ch/record/1331909 |
work_keys_str_mv | AT ferrarasergio freudenthaldualityandgeneralizedspecialgeometry AT marranialessio freudenthaldualityandgeneralizedspecialgeometry AT yeranyanarmen freudenthaldualityandgeneralizedspecialgeometry |