Cargando…

Molecular Gels: Materials with Self-Assembled Fibrillar Networks

Molecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and...

Descripción completa

Detalles Bibliográficos
Autores principales: Weiss, Richard G, Terech, Pierre
Lenguaje:eng
Publicado: Springer 2006
Materias:
Acceso en línea:https://dx.doi.org/10.1007/1-4020-3689-2
http://cds.cern.ch/record/1339052
_version_ 1780921979737473024
author Weiss, Richard G
Terech, Pierre
author_facet Weiss, Richard G
Terech, Pierre
author_sort Weiss, Richard G
collection CERN
description Molecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of LMOGs are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual LMOG molecules leading to SAFINs. Several actual and potential applications of molecular gels in disparate fields (from silicate replication of nanostructures to art conservation) are described. Special emphasis is placed on perspectives for future developments. This book is an invaluable resource for researchers and practitioners either already researching self-assembly and soft matter or new to the area. Those who will find the book useful include chemists, engineers, spectroscopists, physicists, biologists, theoreticians, and materials scientists. Richard G. Weiss is Professor of Chemistry, Department of Chemistry, Georgetown University, Washington, DC, USA. Pierre Terech is Research Director, CNRS – Atomic Energy Center – Grenoble University, Grenoble, France.
id cern-1339052
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2006
publisher Springer
record_format invenio
spelling cern-13390522021-04-22T01:01:40Zdoi:10.1007/1-4020-3689-2http://cds.cern.ch/record/1339052engWeiss, Richard GTerech, PierreMolecular Gels: Materials with Self-Assembled Fibrillar NetworksGeneral Theoretical PhysicsMolecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of LMOGs are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual LMOG molecules leading to SAFINs. Several actual and potential applications of molecular gels in disparate fields (from silicate replication of nanostructures to art conservation) are described. Special emphasis is placed on perspectives for future developments. This book is an invaluable resource for researchers and practitioners either already researching self-assembly and soft matter or new to the area. Those who will find the book useful include chemists, engineers, spectroscopists, physicists, biologists, theoreticians, and materials scientists. Richard G. Weiss is Professor of Chemistry, Department of Chemistry, Georgetown University, Washington, DC, USA. Pierre Terech is Research Director, CNRS – Atomic Energy Center – Grenoble University, Grenoble, France.Springeroai:cds.cern.ch:13390522006
spellingShingle General Theoretical Physics
Weiss, Richard G
Terech, Pierre
Molecular Gels: Materials with Self-Assembled Fibrillar Networks
title Molecular Gels: Materials with Self-Assembled Fibrillar Networks
title_full Molecular Gels: Materials with Self-Assembled Fibrillar Networks
title_fullStr Molecular Gels: Materials with Self-Assembled Fibrillar Networks
title_full_unstemmed Molecular Gels: Materials with Self-Assembled Fibrillar Networks
title_short Molecular Gels: Materials with Self-Assembled Fibrillar Networks
title_sort molecular gels: materials with self-assembled fibrillar networks
topic General Theoretical Physics
url https://dx.doi.org/10.1007/1-4020-3689-2
http://cds.cern.ch/record/1339052
work_keys_str_mv AT weissrichardg moleculargelsmaterialswithselfassembledfibrillarnetworks
AT terechpierre moleculargelsmaterialswithselfassembledfibrillarnetworks