Cargando…

The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM

We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral $\tilde\Phi_6$ with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar $\\mathcal{N}=...

Descripción completa

Detalles Bibliográficos
Autores principales: Dixon, Lance J., Drummond, James M., Henn, Johannes M.
Lenguaje:eng
Publicado: 2011
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP06(2011)100
http://cds.cern.ch/record/1344980
_version_ 1780922194641027072
author Dixon, Lance J.
Drummond, James M.
Henn, Johannes M.
author_facet Dixon, Lance J.
Drummond, James M.
Henn, Johannes M.
author_sort Dixon, Lance J.
collection CERN
description We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral $\tilde\Phi_6$ with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar $\\mathcal{N}=4$ super-Yang-Mills theory, $\Omega^{(1)}$ and $\Omega^{(2)}$. The derivative of $\Omega^{(2)}$ with respect to one of the conformal invariants yields $\tilde\Phi_6$, while another first-order differential operator applied to $\tilde\Phi_6$ yields $\Omega^{(1)}$. We also introduce some kinematic variables that rationalize the arguments of the polylogarithms, making it easy to verify the latter differential equation. We also give a further example of a six-dimensional integral relevant for amplitudes in $\\mathcal{N}=4$ super-Yang-Mills.
id cern-1344980
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2011
record_format invenio
spelling cern-13449802019-10-04T11:32:57Zdoi:10.1007/JHEP06(2011)100http://cds.cern.ch/record/1344980engDixon, Lance J.Drummond, James M.Henn, Johannes M.The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYMParticle Physics - TheoryWe provide an analytic formula for the (rescaled) one-loop scalar hexagon integral $\tilde\Phi_6$ with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar $\\mathcal{N}=4$ super-Yang-Mills theory, $\Omega^{(1)}$ and $\Omega^{(2)}$. The derivative of $\Omega^{(2)}$ with respect to one of the conformal invariants yields $\tilde\Phi_6$, while another first-order differential operator applied to $\tilde\Phi_6$ yields $\Omega^{(1)}$. We also introduce some kinematic variables that rationalize the arguments of the polylogarithms, making it easy to verify the latter differential equation. We also give a further example of a six-dimensional integral relevant for amplitudes in $\\mathcal{N}=4$ super-Yang-Mills.arXiv:1104.2787HU-EP-11-17CERN-PH-TH-2011-075SLAC-PUB-14434LAPTH-013-11oai:cds.cern.ch:13449802011-04-15
spellingShingle Particle Physics - Theory
Dixon, Lance J.
Drummond, James M.
Henn, Johannes M.
The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM
title The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM
title_full The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM
title_fullStr The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM
title_full_unstemmed The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM
title_short The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM
title_sort one-loop six-dimensional hexagon integral and its relation to mhv amplitudes in n=4 sym
topic Particle Physics - Theory
url https://dx.doi.org/10.1007/JHEP06(2011)100
http://cds.cern.ch/record/1344980
work_keys_str_mv AT dixonlancej theoneloopsixdimensionalhexagonintegralanditsrelationtomhvamplitudesinn4sym
AT drummondjamesm theoneloopsixdimensionalhexagonintegralanditsrelationtomhvamplitudesinn4sym
AT hennjohannesm theoneloopsixdimensionalhexagonintegralanditsrelationtomhvamplitudesinn4sym
AT dixonlancej oneloopsixdimensionalhexagonintegralanditsrelationtomhvamplitudesinn4sym
AT drummondjamesm oneloopsixdimensionalhexagonintegralanditsrelationtomhvamplitudesinn4sym
AT hennjohannesm oneloopsixdimensionalhexagonintegralanditsrelationtomhvamplitudesinn4sym