Cargando…
The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM
We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral $\tilde\Phi_6$ with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar $\\mathcal{N}=...
Autores principales: | Dixon, Lance J., Drummond, James M., Henn, Johannes M. |
---|---|
Lenguaje: | eng |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP06(2011)100 http://cds.cern.ch/record/1344980 |
Ejemplares similares
-
The one-loop six-dimensional hexagon integral with three massive corners
por: Del Duca, Vittorio, et al.
Publicado: (2011) -
Bootstrapping the three-loop hexagon
por: Dixon, Lance J., et al.
Publicado: (2011) -
Analytic result for the two-loop six-point NMHV amplitude in N=4 super Yang-Mills theory
por: Dixon, Lance J., et al.
Publicado: (2011) -
The Two-Loop Hexagon Wilson Loop in N = 4 SYM
por: Del Duca, Vittorio, et al.
Publicado: (2010) -
The five gluon amplitude and one-loop integrals
por: Bern, Zvi, et al.
Publicado: (1992)