Cargando…
Studies on the thermo-mechanical behavior of the CLIC two-beam module
To fulfil the mechanical requirements set by the luminosity goals of the CLIC collider, currently under study, the 2-m two-beam modules, the shortest repetitive elements in the main linac, have to be controlled at micrometer level. At the same time these modules are exposed to variable high power di...
Autores principales: | , , |
---|---|
Formato: | info:eu-repo/semantics/article |
Lenguaje: | eng |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1346997 |
Sumario: | To fulfil the mechanical requirements set by the luminosity goals of the CLIC collider, currently under study, the 2-m two-beam modules, the shortest repetitive elements in the main linac, have to be controlled at micrometer level. At the same time these modules are exposed to variable high power dissipation while the accelerator is ramped up to nominal power as well as when the mode of CLIC operation is varied. This will result into inevitable temperature excursions driving mechanical distortions in and between different module components. A FEM model is essential to estimate and simulate the fundamental thermo-mechanical behaviour of the CLIC two-beam module to facilitate its design and development. In this paper, the fundamental thermal environments for the RF-components of the module are described. Also the thermal and structural results for the studied module configuration are presented showing the fundamental thermo-mechanical behaviour under the main CLIC collider operation conditions. |
---|