Cargando…
The one-loop six-dimensional hexagon integral with three massive corners
We compute the six-dimensional hexagon integral with three non-adjacent external masses analytically. After a simple rescaling, it is given by a function of six dual conformally invariant cross-ratios. The result can be expressed as a sum of 24 terms involving only one basic function, which is a sim...
Autores principales: | Del Duca, Vittorio, Dixon, Lance J., Drummond, James M., Duhr, Claude, Henn, Johannes M., Smirnov, Vladimir A. |
---|---|
Lenguaje: | eng |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.84.045017 http://cds.cern.ch/record/1350167 |
Ejemplares similares
-
The Two-Loop Hexagon Wilson Loop in N = 4 SYM
por: Del Duca, Vittorio, et al.
Publicado: (2010) -
The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM
por: Dixon, Lance J., et al.
Publicado: (2011) -
Bootstrapping the three-loop hexagon
por: Dixon, Lance J., et al.
Publicado: (2011) -
A Two-Loop Octagon Wilson Loop in N = 4 SYM
por: Del Duca, Vittorio, et al.
Publicado: (2010) -
Hexagon functions and the three-loop remainder function
por: Dixon, Lance J., et al.
Publicado: (2013)