Cargando…
Measuring the W-Boson mass at a hadron collider: a study of phase-space singularity methods
The traditional method to measure the W-Boson mass at a hadron collider (more precisely, its ratio to the Z-mass) utilizes the distributions of three variables in events where the W decays into an electron or a muon: the charged-lepton transverse momentum, the missing transverse energy and the trans...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP08(2011)023 http://cds.cern.ch/record/1356067 |
Sumario: | The traditional method to measure the W-Boson mass at a hadron collider (more precisely, its ratio to the Z-mass) utilizes the distributions of three variables in events where the W decays into an electron or a muon: the charged-lepton transverse momentum, the missing transverse energy and the transverse mass of the lepton pair. We study the putative advantages of the additional measurement of a fourth variable: an improved phase-space singularity mass. This variable is statistically optimal, and simultaneously exploits the longitudinal- and transverse-momentum distributions of the charged lepton. Though the process we discuss is one of the simplest realistic ones involving just one unobservable particle, it is fairly non-trivial and constitutes a good "training" example for the scrutiny of phenomena involving invisible objects. Our graphical analysis of the phase space is akin to that of a Dalitz plot, extended to such processes. |
---|