Cargando…
An Experimental Investigation on Cavity Pulsed Heating
Cavity pulsed heating experiments have been conducted at SLAC National Accelerator Laboratory in collaboration with CERN and KEK. These experiments were designed to gain a better understanding on the impact of high power pulsed magnetic fields on copper and copper...
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1363650 |
Sumario: | Cavity pulsed heating experiments have been conducted at SLAC National Accelerator Laboratory in collaboration with CERN and KEK. These experiments were designed to gain a better understanding on the impact of high power pulsed magnetic fields on copper and copper alloys. The cavity is a one port hemispherical cavity that operates in the TE013-like mode at 11.424 GHz. The test samples are mounted onto the endcap of the cavity. By using the TE013 mode, pulsed heating information can be analyzed that is based only on the impact of the peak magnetic field which is much bigger in value on the test sample than on any other place in the cavity. This work has shown that pulsed heating surface damage on copper and copper alloys is dependent on processing time, pulsed heating temperature, material hardness, and crystallographic orientation and that initial stresses occur along grain boundaries which can be followed by pitting or by transgranular microfractures that propagate and terminate on grain boundaries. The level of pulsed heating surface damage was found to be less on the smaller grain samples. This is likely due to grain boundaries limiting the propagation of fatigue cracks. |
---|