Cargando…
Bootstrapping the three-loop hexagon
We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N=4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natura...
Autores principales: | Dixon, Lance J., Drummond, James M., Henn, Johannes M. |
---|---|
Lenguaje: | eng |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP11(2011)023 http://cds.cern.ch/record/1377133 |
Ejemplares similares
-
The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM
por: Dixon, Lance J., et al.
Publicado: (2011) -
Hexagon functions and the three-loop remainder function
por: Dixon, Lance J., et al.
Publicado: (2013) -
The one-loop six-dimensional hexagon integral with three massive corners
por: Del Duca, Vittorio, et al.
Publicado: (2011) -
Analytic result for the two-loop six-point NMHV amplitude in N=4 super Yang-Mills theory
por: Dixon, Lance J., et al.
Publicado: (2011) -
A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon
por: Drummond, James M., et al.
Publicado: (2014)