Cargando…

Resource utilization by the ATLAS High Level Trigger during 2010 and 2011 LHC running

In 2010 and 2011, the ATLAS experiment successfully recorded data from LHC collisions with high efficiency and excellent data quality. ATLAS employs a three-level trigger system to select events of interest for physics analyses and detector commissioning. The trigger system consists of a custom-desi...

Descripción completa

Detalles Bibliográficos
Autor principal: Ospanov, R
Lenguaje:eng
Publicado: 2011
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.phpro.2012.02.517
http://cds.cern.ch/record/1382466
Descripción
Sumario:In 2010 and 2011, the ATLAS experiment successfully recorded data from LHC collisions with high efficiency and excellent data quality. ATLAS employs a three-level trigger system to select events of interest for physics analyses and detector commissioning. The trigger system consists of a custom-designed hardware trigger at level-1 and software algorithms at the two higher levels. The trigger selection is defined by a trigger menu which consists of more than 300 individual trigger signatures, such as electrons, muons, particle jets, etc. An execution of a trigger signature incurs computing and data storage costs. Th composition of the deployed trigger menu depends on the instantaneous LHC luminosity, the experiment's goals for the recorded data, and the limits imposed by the available computing power, network bandwidth and storage space. This paper describes a trigger monitoring framework for assigning computing costs for individual trigger signatures and trigger menus as a whole. These costs can be extrapolated to higher luminosity allowing development of trigger menus for a higher LHC collision rate than currently achievable.