Cargando…

Fourier analysis: an introduction

This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century...

Descripción completa

Detalles Bibliográficos
Autores principales: Stein, Elias M, Shakarchi, Rami
Lenguaje:eng
Publicado: Princeton Univ. Press 2003
Materias:
Acceso en línea:http://cds.cern.ch/record/1385516
_version_ 1780923195195392000
author Stein, Elias M
Shakarchi, Rami
author_facet Stein, Elias M
Shakarchi, Rami
author_sort Stein, Elias M
collection CERN
description This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions.The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as th
id cern-1385516
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2003
publisher Princeton Univ. Press
record_format invenio
spelling cern-13855162021-04-22T00:51:06Zhttp://cds.cern.ch/record/1385516engStein, Elias MShakarchi, RamiFourier analysis: an introductionMathematical Physics and MathematicsThis first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions.The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as thThis first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such aThis first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.Princeton Univ. Pressoai:cds.cern.ch:13855162003
spellingShingle Mathematical Physics and Mathematics
Stein, Elias M
Shakarchi, Rami
Fourier analysis: an introduction
title Fourier analysis: an introduction
title_full Fourier analysis: an introduction
title_fullStr Fourier analysis: an introduction
title_full_unstemmed Fourier analysis: an introduction
title_short Fourier analysis: an introduction
title_sort fourier analysis: an introduction
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/1385516
work_keys_str_mv AT steineliasm fourieranalysisanintroduction
AT shakarchirami fourieranalysisanintroduction