Cargando…

Silicon Strip Detectors for the ATLAS sLHC Upgrade

While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will nee...

Descripción completa

Detalles Bibliográficos
Autor principal: Miñano, M
Lenguaje:eng
Publicado: 2011
Materias:
Acceso en línea:http://cds.cern.ch/record/1386236
Descripción
Sumario:While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. The left part of figure 1 shows the simulated layout for the ATLAS tracker upgrade to be installed in the volume taken up by the current ATLAS pixel, strip and transition radiation detectors. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a number of different designs. These prototype detectors were then irradiated to a set of fluences matched to sLHC expectations. The irradiated sensors were subsequently tested with prototype sLHC readout electronics in order to study the radiation-induced degradation, and determine their performance after serious hadron irradiation of up to a few 1015 1-MeV neutron-equivalent per cm2. The right part of figure 1 shows an overview of the signal measured in such silicon detectors after irradiation to six different doses representative of sLHC conditions. As expected the signal is visibly degraded as a function of irradiation. It is however evident that sufficient charge can still be recorded even at the highest fluence. We will give an overview of the ATLAS tracker upgrade project, in particular focusing on the crucial innermost silicon strip layers. Results from a wide range of irradiated silicon detectors will be presented. We will draw conclusions on what type and design of strip detectors to employ for the upgrades of the tracking layers in the sLHC upgrades of LHC experiments.