Cargando…
Precision NNLO determination of alpha_s(M_Z) using an unbiased global parton set
We determine the strong coupling alpha_s at NNLO in perturbative QCD using the global dataset input to the NNPDF2.1 NNLO parton fit: data from neutral and charged current deep-inelastic scattering, Drell-Yan, vector boson production and inclusive jets. We find alpha_s(M_Z)=0.1173+- 0.0007 (stat), wh...
Autores principales: | , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.physletb.2011.11.053 http://cds.cern.ch/record/1389920 |
Sumario: | We determine the strong coupling alpha_s at NNLO in perturbative QCD using the global dataset input to the NNPDF2.1 NNLO parton fit: data from neutral and charged current deep-inelastic scattering, Drell-Yan, vector boson production and inclusive jets. We find alpha_s(M_Z)=0.1173+- 0.0007 (stat), where the statistical uncertainty comes from the underlying data and uncertainties due to the analysis procedure are negligible. We show that the distribution of alpha_s values preferred by different experiments in the global fit is statistically consistent, without need for rescaling uncertainties by a "tolerance" factor. We show that if deep-inelastic data only are used, the best-fit value of alpha_s is somewhat lower, but consistent within one sigma with the global determination. We estimate the dominant theoretical uncertainty, from higher orders corrections, to be Delta alpha_s (pert) ~ 0.0009. |
---|