Cargando…

An integral test of FLUKA nuclear models with 160 MeV proton beams in multi-layer Faraday cups

Monte Carlo (MC) codes are useful tools to simulate the complex processes of proton beam interactions with matter. In proton therapy, nuclear reactions influence the dose distribution. Therefore, the validation of nuclear models adopted in MC codes is a critical requisite for their use in this field...

Descripción completa

Detalles Bibliográficos
Autores principales: Rinaldi, I, Paganetti, H, Parodi, K, Ferrari, A, Sala, P, Mairani, A
Lenguaje:eng
Publicado: 2011
Materias:
Acceso en línea:https://dx.doi.org/10.1088/0031-9155/56/13/016
http://cds.cern.ch/record/1399736
_version_ 1780923616045563904
author Rinaldi, I
Paganetti, H
Parodi, K
Ferrari, A
Sala, P
Mairani, A
author_facet Rinaldi, I
Paganetti, H
Parodi, K
Ferrari, A
Sala, P
Mairani, A
author_sort Rinaldi, I
collection CERN
description Monte Carlo (MC) codes are useful tools to simulate the complex processes of proton beam interactions with matter. In proton therapy, nuclear reactions influence the dose distribution. Therefore, the validation of nuclear models adopted in MC codes is a critical requisite for their use in this field. A simple integral test can be performed using a multi-layer Faraday cup (MLFC). This method allows separation of the nuclear and atomic interaction processes, which are responsible for secondary particle emission and the finite primary proton range, respectively. In this work, the propagation of 160 MeV protons stopping in two MLFCs made of polyethylene and copper has been simulated by the FLUKA MC code. The calculations have been performed with and without secondary electron emission and transport, as well as charge sharing in the dielectric layers. Previous results with other codes neglected those two effects. The impact of this approximation has been investigated and found to be relevant only in the proximity of the Bragg peak. Longitudinal charge distributions computed with FLUKA with both approaches have been compared with experimental data from the literature. Moreover, the contribution of different processes to the measurable signal has been addressed. A thorough analysis of the results has demonstrated that the nuclear and electromagnetic models of FLUKA reproduce the two sets of experimental data reasonably well.
id cern-1399736
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2011
record_format invenio
spelling cern-13997362019-09-30T06:29:59Zdoi:10.1088/0031-9155/56/13/016http://cds.cern.ch/record/1399736engRinaldi, IPaganetti, HParodi, KFerrari, ASala, PMairani, AAn integral test of FLUKA nuclear models with 160 MeV proton beams in multi-layer Faraday cupsXXHealth Physics and Radiation EffectsMonte Carlo (MC) codes are useful tools to simulate the complex processes of proton beam interactions with matter. In proton therapy, nuclear reactions influence the dose distribution. Therefore, the validation of nuclear models adopted in MC codes is a critical requisite for their use in this field. A simple integral test can be performed using a multi-layer Faraday cup (MLFC). This method allows separation of the nuclear and atomic interaction processes, which are responsible for secondary particle emission and the finite primary proton range, respectively. In this work, the propagation of 160 MeV protons stopping in two MLFCs made of polyethylene and copper has been simulated by the FLUKA MC code. The calculations have been performed with and without secondary electron emission and transport, as well as charge sharing in the dielectric layers. Previous results with other codes neglected those two effects. The impact of this approximation has been investigated and found to be relevant only in the proximity of the Bragg peak. Longitudinal charge distributions computed with FLUKA with both approaches have been compared with experimental data from the literature. Moreover, the contribution of different processes to the measurable signal has been addressed. A thorough analysis of the results has demonstrated that the nuclear and electromagnetic models of FLUKA reproduce the two sets of experimental data reasonably well.oai:cds.cern.ch:13997362011
spellingShingle XX
Health Physics and Radiation Effects
Rinaldi, I
Paganetti, H
Parodi, K
Ferrari, A
Sala, P
Mairani, A
An integral test of FLUKA nuclear models with 160 MeV proton beams in multi-layer Faraday cups
title An integral test of FLUKA nuclear models with 160 MeV proton beams in multi-layer Faraday cups
title_full An integral test of FLUKA nuclear models with 160 MeV proton beams in multi-layer Faraday cups
title_fullStr An integral test of FLUKA nuclear models with 160 MeV proton beams in multi-layer Faraday cups
title_full_unstemmed An integral test of FLUKA nuclear models with 160 MeV proton beams in multi-layer Faraday cups
title_short An integral test of FLUKA nuclear models with 160 MeV proton beams in multi-layer Faraday cups
title_sort integral test of fluka nuclear models with 160 mev proton beams in multi-layer faraday cups
topic XX
Health Physics and Radiation Effects
url https://dx.doi.org/10.1088/0031-9155/56/13/016
http://cds.cern.ch/record/1399736
work_keys_str_mv AT rinaldii anintegraltestofflukanuclearmodelswith160mevprotonbeamsinmultilayerfaradaycups
AT paganettih anintegraltestofflukanuclearmodelswith160mevprotonbeamsinmultilayerfaradaycups
AT parodik anintegraltestofflukanuclearmodelswith160mevprotonbeamsinmultilayerfaradaycups
AT ferraria anintegraltestofflukanuclearmodelswith160mevprotonbeamsinmultilayerfaradaycups
AT salap anintegraltestofflukanuclearmodelswith160mevprotonbeamsinmultilayerfaradaycups
AT mairania anintegraltestofflukanuclearmodelswith160mevprotonbeamsinmultilayerfaradaycups
AT rinaldii integraltestofflukanuclearmodelswith160mevprotonbeamsinmultilayerfaradaycups
AT paganettih integraltestofflukanuclearmodelswith160mevprotonbeamsinmultilayerfaradaycups
AT parodik integraltestofflukanuclearmodelswith160mevprotonbeamsinmultilayerfaradaycups
AT ferraria integraltestofflukanuclearmodelswith160mevprotonbeamsinmultilayerfaradaycups
AT salap integraltestofflukanuclearmodelswith160mevprotonbeamsinmultilayerfaradaycups
AT mairania integraltestofflukanuclearmodelswith160mevprotonbeamsinmultilayerfaradaycups