Cargando…

Multi-Channel Amplifier-Discriminator for Highly Time-Resolved Detection

A low-power multi-channel amplifier-discriminator was developed for application in highly time-resolved detection systems. The proposed circuit architecture, so-called Nino, is based on a time-over-threshold approach and shows a high potential for time-resolved readout of solid-state photo-detectors...

Descripción completa

Detalles Bibliográficos
Autores principales: Despeisse, M, Powolny, F, Lapington, J, Jarron, P
Lenguaje:eng
Publicado: 2011
Materias:
Acceso en línea:https://dx.doi.org/10.1109/TNS.2010.2100409
http://cds.cern.ch/record/1399874
Descripción
Sumario:A low-power multi-channel amplifier-discriminator was developed for application in highly time-resolved detection systems. The proposed circuit architecture, so-called Nino, is based on a time-over-threshold approach and shows a high potential for time-resolved readout of solid-state photo-detectors and of detectors based on vacuum technologies. The Irpics circuit was designed in a 250 nm CMOS technology, implementing 32 channels of a Nino version optimized to achieve high-time resolution on the output low-voltage differential signals (LVDS) while keeping a low power consumption of 10 mW per channel. Electrical characterizations of the circuit demonstrate a very low intrinsic time jitter on the output pulse leading edge, measured below 10 ps rms for each channel for high input signal charges (100 fC) and below 25 ps rms for low input signal charges (20-100 fC). The read-out architecture moreover permits to retrieve the input signal charge from the timing measurements, while a calibration procedure was developed to correct for time walk variations of the output pulses. The Irpics circuit therefore shows a high potential of application in multi-channel detection systems requiring a high time resolution, as needed for Time Of Flight systems (TOF), Positron Emission Tomography (PET) or time-resolved spectroscopy.