Cargando…
Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains
The goal of this book is to investigate the behaviour of weak solutions to the elliptic transmisssion problem in a neighborhood of boundary singularities: angular and conic points or edges. We consider this problem both for linear and quasi-linear (till now very little studied) equations. Chapter 1...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2010
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-0346-0477-2 http://cds.cern.ch/record/1412710 |
Sumario: | The goal of this book is to investigate the behaviour of weak solutions to the elliptic transmisssion problem in a neighborhood of boundary singularities: angular and conic points or edges. We consider this problem both for linear and quasi-linear (till now very little studied) equations. Chapter 1 is of auxiliary character. Chapter 2 deals with the eigenvalue problem for the m-Laplace-Beltrami operator. By the variational principle we prove a new integro-differential Friedrichs-Wirtinger type inequality. This inequality is a basis for the obtaining of precise exponents of the decreasing rate |
---|