Cargando…

Noncommutative Functional Calculus

The book contains recent results concerning a functional calulus for n-tuples of not necessarily commuting linear operators and for quaternionic linear operators. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra the so-called slice monoge...

Descripción completa

Detalles Bibliográficos
Autores principales: Colombo, Fabrizio, Sabadini, Irene, Struppa, Daniele Carlo
Lenguaje:eng
Publicado: Springer 2011
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-0348-0110-2
http://cds.cern.ch/record/1413382
_version_ 1780923956521336832
author Colombo, Fabrizio
Sabadini, Irene
Struppa, Daniele Carlo
author_facet Colombo, Fabrizio
Sabadini, Irene
Struppa, Daniele Carlo
author_sort Colombo, Fabrizio
collection CERN
description The book contains recent results concerning a functional calulus for n-tuples of not necessarily commuting linear operators and for quaternionic linear operators. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra the so-called slice monogenic functions which are carefully described in the book and, in particular, for functions with values in the algebra of quaternions the so-called slice regular functions. All the results in the book are new (except for an Appendix on the Riesz-Dunford functional calculus and for a short introduction
id cern-1413382
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2011
publisher Springer
record_format invenio
spelling cern-14133822021-04-22T00:42:23Zdoi:10.1007/978-3-0348-0110-2http://cds.cern.ch/record/1413382engColombo, FabrizioSabadini, IreneStruppa, Daniele CarloNoncommutative Functional CalculusMathematical Physics and MathematicsThe book contains recent results concerning a functional calulus for n-tuples of not necessarily commuting linear operators and for quaternionic linear operators. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra the so-called slice monogenic functions which are carefully described in the book and, in particular, for functions with values in the algebra of quaternions the so-called slice regular functions. All the results in the book are new (except for an Appendix on the Riesz-Dunford functional calculus and for a short introductionSpringeroai:cds.cern.ch:14133822011
spellingShingle Mathematical Physics and Mathematics
Colombo, Fabrizio
Sabadini, Irene
Struppa, Daniele Carlo
Noncommutative Functional Calculus
title Noncommutative Functional Calculus
title_full Noncommutative Functional Calculus
title_fullStr Noncommutative Functional Calculus
title_full_unstemmed Noncommutative Functional Calculus
title_short Noncommutative Functional Calculus
title_sort noncommutative functional calculus
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-0348-0110-2
http://cds.cern.ch/record/1413382
work_keys_str_mv AT colombofabrizio noncommutativefunctionalcalculus
AT sabadiniirene noncommutativefunctionalcalculus
AT struppadanielecarlo noncommutativefunctionalcalculus