Cargando…
Theory of Hypergeometric Functions
This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its du...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2011
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-4-431-53938-4 http://cds.cern.ch/record/1414035 |
Sumario: | This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. |
---|