Cargando…

Hyperfinite Dirichlet Forms and Stochastic Processes

This monograph treats the theory of Dirichlet forms from a comprehensive point of view, using 'nonstandard analysis'. Thus, it is close in spirit to the discrete classical formulation of Dirichlet space theory by Beurling and Deny (1958). The discrete infinitesimal setup makes it possible...

Descripción completa

Detalles Bibliográficos
Autores principales: Albeverio, Sergio, Fan, Ruzong, Herzberg, Frederik
Lenguaje:eng
Publicado: Springer 2011
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-642-19659-1
http://cds.cern.ch/record/1414049
_version_ 1780923984618979328
author Albeverio, Sergio
Fan, Ruzong
Herzberg, Frederik
author_facet Albeverio, Sergio
Fan, Ruzong
Herzberg, Frederik
author_sort Albeverio, Sergio
collection CERN
description This monograph treats the theory of Dirichlet forms from a comprehensive point of view, using 'nonstandard analysis'. Thus, it is close in spirit to the discrete classical formulation of Dirichlet space theory by Beurling and Deny (1958). The discrete infinitesimal setup makes it possible to study the diffusion and the jump part using essentially the same methods. This setting has the advantage of being independent of special topological properties of the state space and in this sense is a natural one, valid for both finite- and infinite-dimensional spaces. The present monograph provides a tho
id cern-1414049
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2011
publisher Springer
record_format invenio
spelling cern-14140492021-04-22T00:41:10Zdoi:10.1007/978-3-642-19659-1http://cds.cern.ch/record/1414049engAlbeverio, SergioFan, RuzongHerzberg, FrederikHyperfinite Dirichlet Forms and Stochastic ProcessesMathematical Physics and MathematicsThis monograph treats the theory of Dirichlet forms from a comprehensive point of view, using 'nonstandard analysis'. Thus, it is close in spirit to the discrete classical formulation of Dirichlet space theory by Beurling and Deny (1958). The discrete infinitesimal setup makes it possible to study the diffusion and the jump part using essentially the same methods. This setting has the advantage of being independent of special topological properties of the state space and in this sense is a natural one, valid for both finite- and infinite-dimensional spaces. The present monograph provides a thoSpringeroai:cds.cern.ch:14140492011
spellingShingle Mathematical Physics and Mathematics
Albeverio, Sergio
Fan, Ruzong
Herzberg, Frederik
Hyperfinite Dirichlet Forms and Stochastic Processes
title Hyperfinite Dirichlet Forms and Stochastic Processes
title_full Hyperfinite Dirichlet Forms and Stochastic Processes
title_fullStr Hyperfinite Dirichlet Forms and Stochastic Processes
title_full_unstemmed Hyperfinite Dirichlet Forms and Stochastic Processes
title_short Hyperfinite Dirichlet Forms and Stochastic Processes
title_sort hyperfinite dirichlet forms and stochastic processes
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-642-19659-1
http://cds.cern.ch/record/1414049
work_keys_str_mv AT albeveriosergio hyperfinitedirichletformsandstochasticprocesses
AT fanruzong hyperfinitedirichletformsandstochasticprocesses
AT herzbergfrederik hyperfinitedirichletformsandstochasticprocesses