Cargando…

Homogeneous Spaces and Equivariant Embeddings

Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homog...

Descripción completa

Detalles Bibliográficos
Autor principal: Timashev, DA
Lenguaje:eng
Publicado: Springer 2011
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-642-18399-7
http://cds.cern.ch/record/1414190
Descripción
Sumario:Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space it is natural and helpful to compactify it keeping track of the group action, i.e. to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on classification of equivariant em