Cargando…

Symplectic Geometric Algorithms for Hamiltonian Systems

"Symplectic Geometry Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equat...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Kang, Qin, Mengzhao
Lenguaje:eng
Publicado: Springer 2010
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-642-01777-3
http://cds.cern.ch/record/1414268
_version_ 1780924008406974464
author Feng, Kang
Qin, Mengzhao
author_facet Feng, Kang
Qin, Mengzhao
author_sort Feng, Kang
collection CERN
description "Symplectic Geometry Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and development
id cern-1414268
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2010
publisher Springer
record_format invenio
spelling cern-14142682021-04-22T00:40:12Zdoi:10.1007/978-3-642-01777-3http://cds.cern.ch/record/1414268engFeng, KangQin, MengzhaoSymplectic Geometric Algorithms for Hamiltonian SystemsMathematical Physics and Mathematics"Symplectic Geometry Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and developmentSpringeroai:cds.cern.ch:14142682010
spellingShingle Mathematical Physics and Mathematics
Feng, Kang
Qin, Mengzhao
Symplectic Geometric Algorithms for Hamiltonian Systems
title Symplectic Geometric Algorithms for Hamiltonian Systems
title_full Symplectic Geometric Algorithms for Hamiltonian Systems
title_fullStr Symplectic Geometric Algorithms for Hamiltonian Systems
title_full_unstemmed Symplectic Geometric Algorithms for Hamiltonian Systems
title_short Symplectic Geometric Algorithms for Hamiltonian Systems
title_sort symplectic geometric algorithms for hamiltonian systems
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-642-01777-3
http://cds.cern.ch/record/1414268
work_keys_str_mv AT fengkang symplecticgeometricalgorithmsforhamiltoniansystems
AT qinmengzhao symplecticgeometricalgorithmsforhamiltoniansystems