Cargando…

Topics in Extrinsic Geometry of Codimension-One Foliations

Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geomet...

Descripción completa

Detalles Bibliográficos
Autores principales: Rovenski, Vladimir, Walczak, Pawel
Lenguaje:eng
Publicado: Springer 2011
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-1-4419-9908-5
http://cds.cern.ch/record/1414272
_version_ 1780924009046605824
author Rovenski, Vladimir
Walczak, Pawel
author_facet Rovenski, Vladimir
Walczak, Pawel
author_sort Rovenski, Vladimir
collection CERN
description Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geometric results. The Integral Formulae, introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. Th
id cern-1414272
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2011
publisher Springer
record_format invenio
spelling cern-14142722021-04-22T00:40:11Zdoi:10.1007/978-1-4419-9908-5http://cds.cern.ch/record/1414272engRovenski, VladimirWalczak, PawelTopics in Extrinsic Geometry of Codimension-One FoliationsMathematical Physics and MathematicsExtrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geometric results. The Integral Formulae, introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. ThSpringeroai:cds.cern.ch:14142722011
spellingShingle Mathematical Physics and Mathematics
Rovenski, Vladimir
Walczak, Pawel
Topics in Extrinsic Geometry of Codimension-One Foliations
title Topics in Extrinsic Geometry of Codimension-One Foliations
title_full Topics in Extrinsic Geometry of Codimension-One Foliations
title_fullStr Topics in Extrinsic Geometry of Codimension-One Foliations
title_full_unstemmed Topics in Extrinsic Geometry of Codimension-One Foliations
title_short Topics in Extrinsic Geometry of Codimension-One Foliations
title_sort topics in extrinsic geometry of codimension-one foliations
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-1-4419-9908-5
http://cds.cern.ch/record/1414272
work_keys_str_mv AT rovenskivladimir topicsinextrinsicgeometryofcodimensiononefoliations
AT walczakpawel topicsinextrinsicgeometryofcodimensiononefoliations