Cargando…
Magic Coset Decompositions
By exploiting a "mixed" non-symmetric Freudenthal-Rozenfeld-Tits magic square, two types of coset decompositions are analyzed for the non-compact special K\"ahler symmetric rank-3 coset E7(-25)/[(E6(-78) x U(1))/Z_3], occurring in supergravity as the vector multiplets' scalar man...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.4310/ATMP.2013.v17.n5.a4 http://cds.cern.ch/record/1420493 |
_version_ | 1780924145190567936 |
---|---|
author | Cacciatori, Sergio L Cerchiai, Bianca Letizia Marrani, Alessio |
author_facet | Cacciatori, Sergio L Cerchiai, Bianca Letizia Marrani, Alessio |
author_sort | Cacciatori, Sergio L |
collection | CERN |
description | By exploiting a "mixed" non-symmetric Freudenthal-Rozenfeld-Tits magic square, two types of coset decompositions are analyzed for the non-compact special K\"ahler symmetric rank-3 coset E7(-25)/[(E6(-78) x U(1))/Z_3], occurring in supergravity as the vector multiplets' scalar manifold in N=2, D=4 exceptional Maxwell-Einstein theory. The first decomposition exhibits maximal manifest covariance, whereas the second (triality-symmetric) one is of Iwasawa type, with maximal SO(8) covariance. Generalizations to conformal non-compact, real forms of non-degenerate, simple groups "of type E7" are presented for both classes of coset parametrizations, and relations to rank-3 simple Euclidean Jordan algebras and normed trialities over division algebras are also discussed. |
id | cern-1420493 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2012 |
record_format | invenio |
spelling | cern-14204932019-09-30T06:29:59Zdoi:10.4310/ATMP.2013.v17.n5.a4http://cds.cern.ch/record/1420493engCacciatori, Sergio LCerchiai, Bianca LetiziaMarrani, AlessioMagic Coset DecompositionsParticle Physics - TheoryBy exploiting a "mixed" non-symmetric Freudenthal-Rozenfeld-Tits magic square, two types of coset decompositions are analyzed for the non-compact special K\"ahler symmetric rank-3 coset E7(-25)/[(E6(-78) x U(1))/Z_3], occurring in supergravity as the vector multiplets' scalar manifold in N=2, D=4 exceptional Maxwell-Einstein theory. The first decomposition exhibits maximal manifest covariance, whereas the second (triality-symmetric) one is of Iwasawa type, with maximal SO(8) covariance. Generalizations to conformal non-compact, real forms of non-degenerate, simple groups "of type E7" are presented for both classes of coset parametrizations, and relations to rank-3 simple Euclidean Jordan algebras and normed trialities over division algebras are also discussed.arXiv:1201.6314CERN-PH-TH-2012-020oai:cds.cern.ch:14204932012-01-31 |
spellingShingle | Particle Physics - Theory Cacciatori, Sergio L Cerchiai, Bianca Letizia Marrani, Alessio Magic Coset Decompositions |
title | Magic Coset Decompositions |
title_full | Magic Coset Decompositions |
title_fullStr | Magic Coset Decompositions |
title_full_unstemmed | Magic Coset Decompositions |
title_short | Magic Coset Decompositions |
title_sort | magic coset decompositions |
topic | Particle Physics - Theory |
url | https://dx.doi.org/10.4310/ATMP.2013.v17.n5.a4 http://cds.cern.ch/record/1420493 |
work_keys_str_mv | AT cacciatorisergiol magiccosetdecompositions AT cerchiaibiancaletizia magiccosetdecompositions AT marranialessio magiccosetdecompositions |