Cargando…
An Experimental Setup to Measure the Minimum Trigger Energy for Magneto-Thermal Instability in Nb$_{3}$Sn Strands
Magneto-thermal instability may affect high critical current density Nb$_{3}$Sn superconducting strands that can quench even though the transport current is low compared to the critical current with important implications in the design of next generation superconducting magnets. The instability is i...
Autores principales: | , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/TASC.2011.2174555 http://cds.cern.ch/record/1425477 |
_version_ | 1780924235029413888 |
---|---|
author | Takala, E Bordini, B Bremer, J Balle, C Bottura, L Rossi, L |
author_facet | Takala, E Bordini, B Bremer, J Balle, C Bottura, L Rossi, L |
author_sort | Takala, E |
collection | CERN |
description | Magneto-thermal instability may affect high critical current density Nb$_{3}$Sn superconducting strands that can quench even though the transport current is low compared to the critical current with important implications in the design of next generation superconducting magnets. The instability is initiated by a small perturbation energy which is considerably lower than the Minimum Quench Energy (MQE). At CERN, a new experimental setup was developed to measure the smallest perturbation energy (Minimum Trigger Energy, MTE) which is able to trigger the magneto-thermal instability in superconducting Nb$_{3}$Sn-strands. The setup is based on Q-switched laser technology which is able to provide a localized perturbation in nano-second time scale. Using this technique the energy deposition into the strand is well defined and reliable. The laser is located outside the cryostat at room temperature. The beam is guided from room temperature on to the superconducting strand by using a UV-enhanced fused silica fibre. The strand is mounted on a VAMAS barrel. A part of the beam’s energy is absorbed into the strand acting as the trigger energy for the magneto-thermal instability. In this paper the experimental setup and the calibration of the absorbed energy is presented |
id | cern-1425477 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2012 |
record_format | invenio |
spelling | cern-14254772019-09-30T06:29:59Zdoi:10.1109/TASC.2011.2174555http://cds.cern.ch/record/1425477engTakala, EBordini, BBremer, JBalle, CBottura, LRossi, LAn Experimental Setup to Measure the Minimum Trigger Energy for Magneto-Thermal Instability in Nb$_{3}$Sn StrandsAccelerators and Storage RingsMagneto-thermal instability may affect high critical current density Nb$_{3}$Sn superconducting strands that can quench even though the transport current is low compared to the critical current with important implications in the design of next generation superconducting magnets. The instability is initiated by a small perturbation energy which is considerably lower than the Minimum Quench Energy (MQE). At CERN, a new experimental setup was developed to measure the smallest perturbation energy (Minimum Trigger Energy, MTE) which is able to trigger the magneto-thermal instability in superconducting Nb$_{3}$Sn-strands. The setup is based on Q-switched laser technology which is able to provide a localized perturbation in nano-second time scale. Using this technique the energy deposition into the strand is well defined and reliable. The laser is located outside the cryostat at room temperature. The beam is guided from room temperature on to the superconducting strand by using a UV-enhanced fused silica fibre. The strand is mounted on a VAMAS barrel. A part of the beam’s energy is absorbed into the strand acting as the trigger energy for the magneto-thermal instability. In this paper the experimental setup and the calibration of the absorbed energy is presentedCERN-ATS-2012-032oai:cds.cern.ch:14254772012-02-20 |
spellingShingle | Accelerators and Storage Rings Takala, E Bordini, B Bremer, J Balle, C Bottura, L Rossi, L An Experimental Setup to Measure the Minimum Trigger Energy for Magneto-Thermal Instability in Nb$_{3}$Sn Strands |
title | An Experimental Setup to Measure the Minimum Trigger Energy for Magneto-Thermal Instability in Nb$_{3}$Sn Strands |
title_full | An Experimental Setup to Measure the Minimum Trigger Energy for Magneto-Thermal Instability in Nb$_{3}$Sn Strands |
title_fullStr | An Experimental Setup to Measure the Minimum Trigger Energy for Magneto-Thermal Instability in Nb$_{3}$Sn Strands |
title_full_unstemmed | An Experimental Setup to Measure the Minimum Trigger Energy for Magneto-Thermal Instability in Nb$_{3}$Sn Strands |
title_short | An Experimental Setup to Measure the Minimum Trigger Energy for Magneto-Thermal Instability in Nb$_{3}$Sn Strands |
title_sort | experimental setup to measure the minimum trigger energy for magneto-thermal instability in nb$_{3}$sn strands |
topic | Accelerators and Storage Rings |
url | https://dx.doi.org/10.1109/TASC.2011.2174555 http://cds.cern.ch/record/1425477 |
work_keys_str_mv | AT takalae anexperimentalsetuptomeasuretheminimumtriggerenergyformagnetothermalinstabilityinnb3snstrands AT bordinib anexperimentalsetuptomeasuretheminimumtriggerenergyformagnetothermalinstabilityinnb3snstrands AT bremerj anexperimentalsetuptomeasuretheminimumtriggerenergyformagnetothermalinstabilityinnb3snstrands AT ballec anexperimentalsetuptomeasuretheminimumtriggerenergyformagnetothermalinstabilityinnb3snstrands AT bottural anexperimentalsetuptomeasuretheminimumtriggerenergyformagnetothermalinstabilityinnb3snstrands AT rossil anexperimentalsetuptomeasuretheminimumtriggerenergyformagnetothermalinstabilityinnb3snstrands AT takalae experimentalsetuptomeasuretheminimumtriggerenergyformagnetothermalinstabilityinnb3snstrands AT bordinib experimentalsetuptomeasuretheminimumtriggerenergyformagnetothermalinstabilityinnb3snstrands AT bremerj experimentalsetuptomeasuretheminimumtriggerenergyformagnetothermalinstabilityinnb3snstrands AT ballec experimentalsetuptomeasuretheminimumtriggerenergyformagnetothermalinstabilityinnb3snstrands AT bottural experimentalsetuptomeasuretheminimumtriggerenergyformagnetothermalinstabilityinnb3snstrands AT rossil experimentalsetuptomeasuretheminimumtriggerenergyformagnetothermalinstabilityinnb3snstrands |