Cargando…
A non-renormalization theorem for chiral primary 3-point functions
In this note we prove a non-renormalization theorem for the 3-point functions of 1/2 BPS primaries in the four-dimensional N = 4 SYM and chiral primaries in two dimensional N =(4,4) SCFTs. Our proof is rather elementary: it is based on Ward identities and the structure of the short multiplets of the...
Autores principales: | Baggio, Marco, de Boer, Jan, Papadodimas, Kyriakos |
---|---|
Lenguaje: | eng |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP07(2012)137 http://cds.cern.ch/record/1429674 |
Ejemplares similares
-
tt$^{*}$ equations, localization and exact chiral rings in 4d $ \mathcal{N} $ =2 SCFTs
por: Baggio, Marco, et al.
Publicado: (2014) -
On exact correlation functions in SU(N) $ \mathcal{N}=2 $ superconformal QCD
por: Baggio, Marco, et al.
Publicado: (2015) -
Exact correlation functions in $SU(2) \mathcal N=2$ superconformal QCD
por: Baggio, Marco, et al.
Publicado: (2014) -
Geometric Holography, the Renormalization Group and the c-Theorem
por: Alvarez, Enrique, et al.
Publicado: (1998) -
Multiloop no-renormalization theorems for the ten-dimensional heterotic string
por: Ellis, Jonathan Richard, et al.
Publicado: (1989)