Cargando…
The decomposition of global conformal invariants
This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. Thes...
Autor principal: | Alexakis, Spyros |
---|---|
Lenguaje: | eng |
Publicado: |
Princeton University Press
2012
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1438723 |
Ejemplares similares
-
Decomposition and invariance of measures, and statistical transformation models
por: Barndorff-Nielsen, Ole E, et al.
Publicado: (1989) -
Conformally invariant metrics and quasiconformal mappings
por: Hariri, Parisa, et al.
Publicado: (2020) -
Conformal invariants: topics in geometric function theory
por: Ahlfors, Lars V
Publicado: (2010) -
Minimization of conformally invariant energies in homotopy classes
por: Duzaar, F, et al.
Publicado: (1997) -
Invariants of nine dimensional real Lie algebras with nontrivial Levi decomposition
por: Campoamor-Stursberg, R
Publicado: (2009)