Cargando…

FTK

Selecting interesting events with triggering is very challenging at the LHC due to the busy hadronic environment. Starting in 2014 the LHC will run with an energy of 14TeV and instantaneous luminosities which could exceed 10^34 interactions per cm^2 per second. The triggering in the ATLAS detector i...

Descripción completa

Detalles Bibliográficos
Autor principal: Penning, B
Lenguaje:eng
Publicado: 2012
Materias:
Acceso en línea:http://cds.cern.ch/record/1445267
_version_ 1780924764182806528
author Penning, B
author_facet Penning, B
author_sort Penning, B
collection CERN
description Selecting interesting events with triggering is very challenging at the LHC due to the busy hadronic environment. Starting in 2014 the LHC will run with an energy of 14TeV and instantaneous luminosities which could exceed 10^34 interactions per cm^2 per second. The triggering in the ATLAS detector is realized using a three level trigger approach, in which the first level (L1) is hardware based and the second (L2) and third (EF) stage are realized using large computing farms. It is a crucial and non-trivial task for triggering to maintain a high efficiency for events of interest while suppressing effectively the very high rates of inclusive QCD processes, which constitute mainly background. At the same time the trigger system has to be robust and provide sufficient operational margins to adapt to changes in the running environment. In the current design, track reconstruction can be performed only in limited regions of interest at L2 and the CPU requirements may limit this even further at the highest instantaneous luminosities. Providing high quality track reconstruction over the entire detector volume for the L2 trigger decision would allow gains in efficiency and background rejection for triggers on tau leptons, b-hadrons and help reduce the luminosity dependence of isolation requirements for electrons and muons. The Fast Track Trigger (FTK) is an ongoing upgrade project aimed at providing track reconstruction over the |eta|<2.5 region using the silicon microstrip and pixel detectors. Pattern recognition and track fitting are executed in a hardware system utilizing massive parallel processing and achieve a tracking performance close to that of the global track reconstruction. The FTK system’s design, based on a mixture of advanced technologies (FPGAs, ASICs, Associative Memories), and expected physics performance will be presented.
id cern-1445267
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2012
record_format invenio
spelling cern-14452672019-09-30T06:29:59Zhttp://cds.cern.ch/record/1445267engPenning, BFTKDetectors and Experimental TechniquesSelecting interesting events with triggering is very challenging at the LHC due to the busy hadronic environment. Starting in 2014 the LHC will run with an energy of 14TeV and instantaneous luminosities which could exceed 10^34 interactions per cm^2 per second. The triggering in the ATLAS detector is realized using a three level trigger approach, in which the first level (L1) is hardware based and the second (L2) and third (EF) stage are realized using large computing farms. It is a crucial and non-trivial task for triggering to maintain a high efficiency for events of interest while suppressing effectively the very high rates of inclusive QCD processes, which constitute mainly background. At the same time the trigger system has to be robust and provide sufficient operational margins to adapt to changes in the running environment. In the current design, track reconstruction can be performed only in limited regions of interest at L2 and the CPU requirements may limit this even further at the highest instantaneous luminosities. Providing high quality track reconstruction over the entire detector volume for the L2 trigger decision would allow gains in efficiency and background rejection for triggers on tau leptons, b-hadrons and help reduce the luminosity dependence of isolation requirements for electrons and muons. The Fast Track Trigger (FTK) is an ongoing upgrade project aimed at providing track reconstruction over the |eta|<2.5 region using the silicon microstrip and pixel detectors. Pattern recognition and track fitting are executed in a hardware system utilizing massive parallel processing and achieve a tracking performance close to that of the global track reconstruction. The FTK system’s design, based on a mixture of advanced technologies (FPGAs, ASICs, Associative Memories), and expected physics performance will be presented.ATL-DAQ-SLIDE-2012-140oai:cds.cern.ch:14452672012-05-01
spellingShingle Detectors and Experimental Techniques
Penning, B
FTK
title FTK
title_full FTK
title_fullStr FTK
title_full_unstemmed FTK
title_short FTK
title_sort ftk
topic Detectors and Experimental Techniques
url http://cds.cern.ch/record/1445267
work_keys_str_mv AT penningb ftk