Cargando…
Descripción
Sumario:The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) ensures a safe, correct and efficient experiment operation, contributing to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC operational mode. CMS sub-detectors' bias voltages are set depending on the machine mode and particle beam conditions. An operator provided with a small set of screens supervises the system status summarized from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency by minimizing the time required by sub detectors to prepare for physics data taking. From the infrastructure point of view the DCS will be subject to extensive modifications in 2012. The current rack mounted control PCs will be exchanged by a redundant pair of DELL Blade systems. These blades are a high-density modular solution that incorporates servers and networking into a single chassis that provides shared power, cooling and management. This infrastructure modification will challenge the DCS software and hardware factorization capabilities. The on going studies for this migration together with the latest modifications are discussed in the paper.