Cargando…
Experimental investigations of synchrotron radiation at the onset of the quantum regime
The classical description of synchrotron radiation fails at large Lorentz factors, $\gamma$, for relativistic electrons crossing strong transverse magnetic fields $B$. In the rest frame of the electron this field is comparable to the so-called critical field $B_0 = 4.414\cdot10^9$ T. For $\chi = \ga...
Autores principales: | , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.86.072001 http://cds.cern.ch/record/1458722 |
Sumario: | The classical description of synchrotron radiation fails at large Lorentz factors, $\gamma$, for relativistic electrons crossing strong transverse magnetic fields $B$. In the rest frame of the electron this field is comparable to the so-called critical field $B_0 = 4.414\cdot10^9$ T. For $\chi = \gamma B/B_0 \simeq 1$ quantum corrections are essential for the description of synchrotron radiation to conserve energy. With electrons of energies 10-150 GeV penetrating a germanium single crystal along the $<110>$ axis, we have experimentally investigated the transition from the regime where classical synchrotron radiation is an adequate description, to the regime where the emission drastically changes character; not only in magnitude, but also in spectral shape. The spectrum can only be described by quantum synchrotron radiation formulas. Apart from being a test of strong-field quantum electrodynamics, the experimental results are also relevant for the design of future linear colliders where beamstrahlung - a closely related process - may limit the achievable luminosity. |
---|