Cargando…
Boosting: foundations and algorithms
Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, conv...
Autores principales: | Schapire, Robert E, Freund, Yoav |
---|---|
Lenguaje: | eng |
Publicado: |
MIT Press
2012
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1461731 |
Ejemplares similares
-
Foundations of genetic algorithms 6
por: Martin, W N, et al.
Publicado: (2001) -
Foundations of software testing
:
fundamental algorithms and techniques
por: Mathur, Aditya
Publicado: (2013) -
Machine learning refined: foundations, algorithms, and applications
por: Watt, Jeremy, et al.
Publicado: (2020) -
Foundations of F#
por: Pickering, Robert
Publicado: (2007) -
5th International Conference on Foundations of Data Organizations and Algorithms : FODO '98
por: Collective
Publicado: (1998)