Cargando…
Minimizing gauge-functional for 2-d gravity and string theory
We show the existence of a minimizing procedure for selecting a unique representative on the orbit of any given Riemann surface that contributes to the string partition function. As it must, the procedure reduces the string path integral to a final integration over a particular fundamental domain, s...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.87.086006 http://cds.cern.ch/record/1463770 |
_version_ | 1780925341067378688 |
---|---|
author | Baulieu, Laurent Zwanziger, Daniel |
author_facet | Baulieu, Laurent Zwanziger, Daniel |
author_sort | Baulieu, Laurent |
collection | CERN |
description | We show the existence of a minimizing procedure for selecting a unique representative on the orbit of any given Riemann surface that contributes to the string partition function. As it must, the procedure reduces the string path integral to a final integration over a particular fundamental domain, selected by the choice of the minimizing functional. This construction somehow demystifies the Gribov question. |
id | cern-1463770 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2012 |
record_format | invenio |
spelling | cern-14637702023-03-14T18:28:08Zdoi:10.1103/PhysRevD.87.086006http://cds.cern.ch/record/1463770engBaulieu, LaurentZwanziger, DanielMinimizing gauge-functional for 2-d gravity and string theoryParticle Physics - TheoryWe show the existence of a minimizing procedure for selecting a unique representative on the orbit of any given Riemann surface that contributes to the string partition function. As it must, the procedure reduces the string path integral to a final integration over a particular fundamental domain, selected by the choice of the minimizing functional. This construction somehow demystifies the Gribov question.We show the existence of a minimizing procedure for selecting a unique representative on the orbit of any given Riemann surface that contributes to the string partition function. As it must, the procedure reduces the string path integral to a final integration over a particular fundamental domain, selected by the choice of the minimizing functional. This construction somehow demystifies the Gribov question.arXiv:1207.5210oai:cds.cern.ch:14637702012-07-24 |
spellingShingle | Particle Physics - Theory Baulieu, Laurent Zwanziger, Daniel Minimizing gauge-functional for 2-d gravity and string theory |
title | Minimizing gauge-functional for 2-d gravity and string theory |
title_full | Minimizing gauge-functional for 2-d gravity and string theory |
title_fullStr | Minimizing gauge-functional for 2-d gravity and string theory |
title_full_unstemmed | Minimizing gauge-functional for 2-d gravity and string theory |
title_short | Minimizing gauge-functional for 2-d gravity and string theory |
title_sort | minimizing gauge-functional for 2-d gravity and string theory |
topic | Particle Physics - Theory |
url | https://dx.doi.org/10.1103/PhysRevD.87.086006 http://cds.cern.ch/record/1463770 |
work_keys_str_mv | AT baulieulaurent minimizinggaugefunctionalfor2dgravityandstringtheory AT zwanzigerdaniel minimizinggaugefunctionalfor2dgravityandstringtheory |