Cargando…

LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs Boson

A strong candidate for the Standard Model Scalar boson, H(126), has been discovered by the Large Hadron Collider (LHC) experiments. In order to study this fundamental particle with unprecedented precision, and to perform precision tests of the closure of the Standard Model, we investigate the possib...

Descripción completa

Detalles Bibliográficos
Autores principales: Blondel, A., Koratzinos, M., Assmann, R.W., Butterworth, A., Janot, P., Jimenez, J.M., Grojean, C., Milanese, A., Modena, M., Osborne, J.A., Zimmermann, F., Piekarz, H., Oide, K., Yokoya, K., Ellis, J., Klute, M., Zanetti, M., Velasco, M., Telnov, V., Rivkin, L., Cai, Y.
Lenguaje:eng
Publicado: 2012
Materias:
Acceso en línea:http://cds.cern.ch/record/1471486
_version_ 1780925391282634752
author Blondel, A.
Koratzinos, M.
Assmann, R.W.
Butterworth, A.
Janot, P.
Jimenez, J.M.
Grojean, C.
Milanese, A.
Modena, M.
Osborne, J.A.
Zimmermann, F.
Piekarz, H.
Oide, K.
Yokoya, K.
Ellis, J.
Klute, M.
Zanetti, M.
Velasco, M.
Telnov, V.
Rivkin, L.
Cai, Y.
author_facet Blondel, A.
Koratzinos, M.
Assmann, R.W.
Butterworth, A.
Janot, P.
Jimenez, J.M.
Grojean, C.
Milanese, A.
Modena, M.
Osborne, J.A.
Zimmermann, F.
Piekarz, H.
Oide, K.
Yokoya, K.
Ellis, J.
Klute, M.
Zanetti, M.
Velasco, M.
Telnov, V.
Rivkin, L.
Cai, Y.
author_sort Blondel, A.
collection CERN
description A strong candidate for the Standard Model Scalar boson, H(126), has been discovered by the Large Hadron Collider (LHC) experiments. In order to study this fundamental particle with unprecedented precision, and to perform precision tests of the closure of the Standard Model, we investigate the possibilities offered by An e+e- storage ring collider. We use a design inspired by the B-factories, taking into account the performance achieved at LEP2, and imposing a synchrotron radiation power limit of 100 MW. At the most relevant centre-of-mass energy of 240 GeV, near-constant luminosities of 10^34 cm^{-2}s^{-1} are possible in up to four collision points for a ring of 27km circumference. The achievable luminosity increases with the bending radius, and for 80km circumference, a luminosity of 5 10^34 cm^{-2}s^{-1} in four collision points appears feasible. Beamstrahlung becomes relevant at these high luminosities, leading to a design requirement of large momentum acceptance both in the accelerating system and in the optics. The larger machine could reach the top quark threshold, would yield luminosities per interaction point of 10^36 cm^{-2}s^{-1} at the Z pole (91 GeV) and 2 10^35 cm^{-2}s^{-1} at the W pair production threshold (80 GeV per beam). The energy spread is reduced in the larger ring with respect to what is was at LEP, giving confidence that beam polarization for energy calibration purposes should be available up to the W pair threshold. The capabilities in term of physics performance are outlined.
id cern-1471486
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2012
record_format invenio
spelling cern-14714862019-09-30T06:29:59Zhttp://cds.cern.ch/record/1471486engBlondel, A.Koratzinos, M.Assmann, R.W.Butterworth, A.Janot, P.Jimenez, J.M.Grojean, C.Milanese, A.Modena, M.Osborne, J.A.Zimmermann, F.Piekarz, H.Oide, K.Yokoya, K.Ellis, J.Klute, M.Zanetti, M.Velasco, M.Telnov, V.Rivkin, L.Cai, Y.LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs BosonAccelerators and Storage RingsA strong candidate for the Standard Model Scalar boson, H(126), has been discovered by the Large Hadron Collider (LHC) experiments. In order to study this fundamental particle with unprecedented precision, and to perform precision tests of the closure of the Standard Model, we investigate the possibilities offered by An e+e- storage ring collider. We use a design inspired by the B-factories, taking into account the performance achieved at LEP2, and imposing a synchrotron radiation power limit of 100 MW. At the most relevant centre-of-mass energy of 240 GeV, near-constant luminosities of 10^34 cm^{-2}s^{-1} are possible in up to four collision points for a ring of 27km circumference. The achievable luminosity increases with the bending radius, and for 80km circumference, a luminosity of 5 10^34 cm^{-2}s^{-1} in four collision points appears feasible. Beamstrahlung becomes relevant at these high luminosities, leading to a design requirement of large momentum acceptance both in the accelerating system and in the optics. The larger machine could reach the top quark threshold, would yield luminosities per interaction point of 10^36 cm^{-2}s^{-1} at the Z pole (91 GeV) and 2 10^35 cm^{-2}s^{-1} at the W pair production threshold (80 GeV per beam). The energy spread is reduced in the larger ring with respect to what is was at LEP, giving confidence that beam polarization for energy calibration purposes should be available up to the W pair threshold. The capabilities in term of physics performance are outlined.CERN-ATS-NOTE-2012-062-TECHCERN-PH-TH-2012-281FERMILAB-TM-2544-APCarXiv:1208.0504CERN-ATS-NOTE-2012-062-TECHCERN-PH-TH-2012-281oai:cds.cern.ch:14714862012-08-03
spellingShingle Accelerators and Storage Rings
Blondel, A.
Koratzinos, M.
Assmann, R.W.
Butterworth, A.
Janot, P.
Jimenez, J.M.
Grojean, C.
Milanese, A.
Modena, M.
Osborne, J.A.
Zimmermann, F.
Piekarz, H.
Oide, K.
Yokoya, K.
Ellis, J.
Klute, M.
Zanetti, M.
Velasco, M.
Telnov, V.
Rivkin, L.
Cai, Y.
LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs Boson
title LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs Boson
title_full LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs Boson
title_fullStr LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs Boson
title_full_unstemmed LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs Boson
title_short LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs Boson
title_sort lep3: a high luminosity $e^+e^-$ collider to study the higgs boson
topic Accelerators and Storage Rings
url http://cds.cern.ch/record/1471486
work_keys_str_mv AT blondela lep3ahighluminosityeecollidertostudythehiggsboson
AT koratzinosm lep3ahighluminosityeecollidertostudythehiggsboson
AT assmannrw lep3ahighluminosityeecollidertostudythehiggsboson
AT butterwortha lep3ahighluminosityeecollidertostudythehiggsboson
AT janotp lep3ahighluminosityeecollidertostudythehiggsboson
AT jimenezjm lep3ahighluminosityeecollidertostudythehiggsboson
AT grojeanc lep3ahighluminosityeecollidertostudythehiggsboson
AT milanesea lep3ahighluminosityeecollidertostudythehiggsboson
AT modenam lep3ahighluminosityeecollidertostudythehiggsboson
AT osborneja lep3ahighluminosityeecollidertostudythehiggsboson
AT zimmermannf lep3ahighluminosityeecollidertostudythehiggsboson
AT piekarzh lep3ahighluminosityeecollidertostudythehiggsboson
AT oidek lep3ahighluminosityeecollidertostudythehiggsboson
AT yokoyak lep3ahighluminosityeecollidertostudythehiggsboson
AT ellisj lep3ahighluminosityeecollidertostudythehiggsboson
AT klutem lep3ahighluminosityeecollidertostudythehiggsboson
AT zanettim lep3ahighluminosityeecollidertostudythehiggsboson
AT velascom lep3ahighluminosityeecollidertostudythehiggsboson
AT telnovv lep3ahighluminosityeecollidertostudythehiggsboson
AT rivkinl lep3ahighluminosityeecollidertostudythehiggsboson
AT caiy lep3ahighluminosityeecollidertostudythehiggsboson