Cargando…
LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs Boson
A strong candidate for the Standard Model Scalar boson, H(126), has been discovered by the Large Hadron Collider (LHC) experiments. In order to study this fundamental particle with unprecedented precision, and to perform precision tests of the closure of the Standard Model, we investigate the possib...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1471486 |
_version_ | 1780925391282634752 |
---|---|
author | Blondel, A. Koratzinos, M. Assmann, R.W. Butterworth, A. Janot, P. Jimenez, J.M. Grojean, C. Milanese, A. Modena, M. Osborne, J.A. Zimmermann, F. Piekarz, H. Oide, K. Yokoya, K. Ellis, J. Klute, M. Zanetti, M. Velasco, M. Telnov, V. Rivkin, L. Cai, Y. |
author_facet | Blondel, A. Koratzinos, M. Assmann, R.W. Butterworth, A. Janot, P. Jimenez, J.M. Grojean, C. Milanese, A. Modena, M. Osborne, J.A. Zimmermann, F. Piekarz, H. Oide, K. Yokoya, K. Ellis, J. Klute, M. Zanetti, M. Velasco, M. Telnov, V. Rivkin, L. Cai, Y. |
author_sort | Blondel, A. |
collection | CERN |
description | A strong candidate for the Standard Model Scalar boson, H(126), has been discovered by the Large Hadron Collider (LHC) experiments. In order to study this fundamental particle with unprecedented precision, and to perform precision tests of the closure of the Standard Model, we investigate the possibilities offered by An e+e- storage ring collider. We use a design inspired by the B-factories, taking into account the performance achieved at LEP2, and imposing a synchrotron radiation power limit of 100 MW. At the most relevant centre-of-mass energy of 240 GeV, near-constant luminosities of 10^34 cm^{-2}s^{-1} are possible in up to four collision points for a ring of 27km circumference. The achievable luminosity increases with the bending radius, and for 80km circumference, a luminosity of 5 10^34 cm^{-2}s^{-1} in four collision points appears feasible. Beamstrahlung becomes relevant at these high luminosities, leading to a design requirement of large momentum acceptance both in the accelerating system and in the optics. The larger machine could reach the top quark threshold, would yield luminosities per interaction point of 10^36 cm^{-2}s^{-1} at the Z pole (91 GeV) and 2 10^35 cm^{-2}s^{-1} at the W pair production threshold (80 GeV per beam). The energy spread is reduced in the larger ring with respect to what is was at LEP, giving confidence that beam polarization for energy calibration purposes should be available up to the W pair threshold. The capabilities in term of physics performance are outlined. |
id | cern-1471486 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2012 |
record_format | invenio |
spelling | cern-14714862019-09-30T06:29:59Zhttp://cds.cern.ch/record/1471486engBlondel, A.Koratzinos, M.Assmann, R.W.Butterworth, A.Janot, P.Jimenez, J.M.Grojean, C.Milanese, A.Modena, M.Osborne, J.A.Zimmermann, F.Piekarz, H.Oide, K.Yokoya, K.Ellis, J.Klute, M.Zanetti, M.Velasco, M.Telnov, V.Rivkin, L.Cai, Y.LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs BosonAccelerators and Storage RingsA strong candidate for the Standard Model Scalar boson, H(126), has been discovered by the Large Hadron Collider (LHC) experiments. In order to study this fundamental particle with unprecedented precision, and to perform precision tests of the closure of the Standard Model, we investigate the possibilities offered by An e+e- storage ring collider. We use a design inspired by the B-factories, taking into account the performance achieved at LEP2, and imposing a synchrotron radiation power limit of 100 MW. At the most relevant centre-of-mass energy of 240 GeV, near-constant luminosities of 10^34 cm^{-2}s^{-1} are possible in up to four collision points for a ring of 27km circumference. The achievable luminosity increases with the bending radius, and for 80km circumference, a luminosity of 5 10^34 cm^{-2}s^{-1} in four collision points appears feasible. Beamstrahlung becomes relevant at these high luminosities, leading to a design requirement of large momentum acceptance both in the accelerating system and in the optics. The larger machine could reach the top quark threshold, would yield luminosities per interaction point of 10^36 cm^{-2}s^{-1} at the Z pole (91 GeV) and 2 10^35 cm^{-2}s^{-1} at the W pair production threshold (80 GeV per beam). The energy spread is reduced in the larger ring with respect to what is was at LEP, giving confidence that beam polarization for energy calibration purposes should be available up to the W pair threshold. The capabilities in term of physics performance are outlined.CERN-ATS-NOTE-2012-062-TECHCERN-PH-TH-2012-281FERMILAB-TM-2544-APCarXiv:1208.0504CERN-ATS-NOTE-2012-062-TECHCERN-PH-TH-2012-281oai:cds.cern.ch:14714862012-08-03 |
spellingShingle | Accelerators and Storage Rings Blondel, A. Koratzinos, M. Assmann, R.W. Butterworth, A. Janot, P. Jimenez, J.M. Grojean, C. Milanese, A. Modena, M. Osborne, J.A. Zimmermann, F. Piekarz, H. Oide, K. Yokoya, K. Ellis, J. Klute, M. Zanetti, M. Velasco, M. Telnov, V. Rivkin, L. Cai, Y. LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs Boson |
title | LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs Boson |
title_full | LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs Boson |
title_fullStr | LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs Boson |
title_full_unstemmed | LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs Boson |
title_short | LEP3: A High Luminosity $e^+e^-$ Collider to Study the Higgs Boson |
title_sort | lep3: a high luminosity $e^+e^-$ collider to study the higgs boson |
topic | Accelerators and Storage Rings |
url | http://cds.cern.ch/record/1471486 |
work_keys_str_mv | AT blondela lep3ahighluminosityeecollidertostudythehiggsboson AT koratzinosm lep3ahighluminosityeecollidertostudythehiggsboson AT assmannrw lep3ahighluminosityeecollidertostudythehiggsboson AT butterwortha lep3ahighluminosityeecollidertostudythehiggsboson AT janotp lep3ahighluminosityeecollidertostudythehiggsboson AT jimenezjm lep3ahighluminosityeecollidertostudythehiggsboson AT grojeanc lep3ahighluminosityeecollidertostudythehiggsboson AT milanesea lep3ahighluminosityeecollidertostudythehiggsboson AT modenam lep3ahighluminosityeecollidertostudythehiggsboson AT osborneja lep3ahighluminosityeecollidertostudythehiggsboson AT zimmermannf lep3ahighluminosityeecollidertostudythehiggsboson AT piekarzh lep3ahighluminosityeecollidertostudythehiggsboson AT oidek lep3ahighluminosityeecollidertostudythehiggsboson AT yokoyak lep3ahighluminosityeecollidertostudythehiggsboson AT ellisj lep3ahighluminosityeecollidertostudythehiggsboson AT klutem lep3ahighluminosityeecollidertostudythehiggsboson AT zanettim lep3ahighluminosityeecollidertostudythehiggsboson AT velascom lep3ahighluminosityeecollidertostudythehiggsboson AT telnovv lep3ahighluminosityeecollidertostudythehiggsboson AT rivkinl lep3ahighluminosityeecollidertostudythehiggsboson AT caiy lep3ahighluminosityeecollidertostudythehiggsboson |