Cargando…
Squaring the Magic
We construct and classify all possible Magic Squares (MS's) related to Euclidean or Lorentzian rank-3 simple Jordan algebras, both on normed division algebras and split composition algebras. Besides the known Freudenthal-Rozenfeld-Tits MS, the single-split G\"unaydin-Sierra-Townsend MS, an...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1475346 |
_version_ | 1780925506710929408 |
---|---|
author | Cacciatori, Sergio L Cerchiai, Bianca L Marrani, Alessio |
author_facet | Cacciatori, Sergio L Cerchiai, Bianca L Marrani, Alessio |
author_sort | Cacciatori, Sergio L |
collection | CERN |
description | We construct and classify all possible Magic Squares (MS's) related to Euclidean or Lorentzian rank-3 simple Jordan algebras, both on normed division algebras and split composition algebras. Besides the known Freudenthal-Rozenfeld-Tits MS, the single-split G\"unaydin-Sierra-Townsend MS, and the double-split Barton-Sudbery MS, we obtain other 7 Euclidean and 10 Lorentzian novel MS's. We elucidate the role and the meaning of the various non-compact real forms of Lie algebras, entering the MS's as symmetries of theories of Einstein-Maxwell gravity coupled to non-linear sigma models of scalar fields, possibly endowed with local supersymmetry, in D = 3, 4 and 5 space-time dimensions. In particular, such symmetries can be recognized as the U-dualities or the stabilizers of scalar manifolds within space-time with standard Lorentzian signature or with other, more exotic signatures, also relevant to suitable compactifications of the so-called M*- and M'- theories. Symmetries pertaining to some attractor U-orbits of magic supergravities in Lorentzian space-time also arise in this framework. |
id | cern-1475346 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2012 |
record_format | invenio |
spelling | cern-14753462019-09-30T06:29:59Zhttp://cds.cern.ch/record/1475346engCacciatori, Sergio LCerchiai, Bianca LMarrani, AlessioSquaring the MagicMathematical Physics and MathematicsWe construct and classify all possible Magic Squares (MS's) related to Euclidean or Lorentzian rank-3 simple Jordan algebras, both on normed division algebras and split composition algebras. Besides the known Freudenthal-Rozenfeld-Tits MS, the single-split G\"unaydin-Sierra-Townsend MS, and the double-split Barton-Sudbery MS, we obtain other 7 Euclidean and 10 Lorentzian novel MS's. We elucidate the role and the meaning of the various non-compact real forms of Lie algebras, entering the MS's as symmetries of theories of Einstein-Maxwell gravity coupled to non-linear sigma models of scalar fields, possibly endowed with local supersymmetry, in D = 3, 4 and 5 space-time dimensions. In particular, such symmetries can be recognized as the U-dualities or the stabilizers of scalar manifolds within space-time with standard Lorentzian signature or with other, more exotic signatures, also relevant to suitable compactifications of the so-called M*- and M'- theories. Symmetries pertaining to some attractor U-orbits of magic supergravities in Lorentzian space-time also arise in this framework.arXiv:1208.6153CERN-PH-TH-2012-229oai:cds.cern.ch:14753462012-08-31 |
spellingShingle | Mathematical Physics and Mathematics Cacciatori, Sergio L Cerchiai, Bianca L Marrani, Alessio Squaring the Magic |
title | Squaring the Magic |
title_full | Squaring the Magic |
title_fullStr | Squaring the Magic |
title_full_unstemmed | Squaring the Magic |
title_short | Squaring the Magic |
title_sort | squaring the magic |
topic | Mathematical Physics and Mathematics |
url | http://cds.cern.ch/record/1475346 |
work_keys_str_mv | AT cacciatorisergiol squaringthemagic AT cerchiaibiancal squaringthemagic AT marranialessio squaringthemagic |