Cargando…
GPU acceleration of scientific applications: An update
<!--HTML--><p align="justify"> Just five years ago, NVIDIA introduced CUDA, the Compute Unified Device Architecture, which significantly simplified the development of scientific applications on Graphics Processing Units (GPUs). Since these early days of CUDA, both GPU hardware...
Autores principales: | Messmer, Peter, Orlotti, Edmondo |
---|---|
Lenguaje: | eng |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1481280 |
Ejemplares similares
-
The RapidMind Development Platform for Cell, GP-GPU, and Multicore CPUs
por: Prof. M. McCool, U. of Waterloo and RapidMind Inc.
Publicado: (2007) -
Generic approach to Legacy Fortran code porting on GPU
por: Mikushin, Dmitry
Publicado: (2015) -
Software Defects, Scientific Computation and the Scientific Method
por: Hatton, Les
Publicado: (2011) -
Adopting Fortran legacy code for ensemble simulations on GPU: the experience with Sixtrack
por: Mikushin, Dmitry
Publicado: (2015) -
Wikimedia as a platform for scientific information
por: Mietchen, Daniel
Publicado: (2012)