Cargando…
Mixtures: Estimation and Applications
This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a compl...
Autores principales: | Mengersen, Kerrie, Robert, Christian, Titterington, Mike |
---|---|
Lenguaje: | eng |
Publicado: |
John Wiley & Sons
2011
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1486956 |
Ejemplares similares
-
Case studies in applied Bayesian data science: CIRM Jean-Morlet Chair, fall 2018
por: Mengersen, Kerrie, et al.
Publicado: (2020) -
Handbook of mixture analysis
por: Fruhwirth-Schnatter, Sylvia, et al.
Publicado: (2018) -
Medical applications of finite mixture models
por: Schlattmann, Peter
Publicado: (2009) -
Algorithms and programs of dynamic mixture estimation: unified approach to different types of components
por: Nagy, Ivan, et al.
Publicado: (2017) -
Multivariate and mixture distribution rasch models: extensions and applications
por: Carstensen, Claus
Publicado: (2007)