Cargando…

Algorithmic Algebraic Combinatorics and Gröbner Bases

This collection of tutorial and research papers introduces readers to diverse areas of modern pure and applied algebraic combinatorics and finite geometries with a special emphasis on algorithmic aspects and the use of the theory of Grobner bases. Topics covered include coherent configurations, asso...

Descripción completa

Detalles Bibliográficos
Autores principales: Klin, Mikhail, Jones, Gareth A, Jurisic, Aleksandar
Lenguaje:eng
Publicado: Springer 2009
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-642-01960-9
http://cds.cern.ch/record/1488382
_version_ 1780926279195820032
author Klin, Mikhail
Jones, Gareth A
Jurisic, Aleksandar
author_facet Klin, Mikhail
Jones, Gareth A
Jurisic, Aleksandar
author_sort Klin, Mikhail
collection CERN
description This collection of tutorial and research papers introduces readers to diverse areas of modern pure and applied algebraic combinatorics and finite geometries with a special emphasis on algorithmic aspects and the use of the theory of Grobner bases. Topics covered include coherent configurations, association schemes, permutation groups, Latin squares, the Jacobian conjecture, mathematical chemistry, extremal combinatorics, coding theory, designs, etc. Special attention is paid to the description of innovative practical algorithms and their implementation in software packages such as GAP and MAGM
id cern-1488382
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2009
publisher Springer
record_format invenio
spelling cern-14883822021-04-22T00:11:24Zdoi:10.1007/978-3-642-01960-9http://cds.cern.ch/record/1488382engKlin, MikhailJones, Gareth AJurisic, AleksandarAlgorithmic Algebraic Combinatorics and Gröbner BasesMathematical Physics and MathematicsThis collection of tutorial and research papers introduces readers to diverse areas of modern pure and applied algebraic combinatorics and finite geometries with a special emphasis on algorithmic aspects and the use of the theory of Grobner bases. Topics covered include coherent configurations, association schemes, permutation groups, Latin squares, the Jacobian conjecture, mathematical chemistry, extremal combinatorics, coding theory, designs, etc. Special attention is paid to the description of innovative practical algorithms and their implementation in software packages such as GAP and MAGMSpringeroai:cds.cern.ch:14883822009
spellingShingle Mathematical Physics and Mathematics
Klin, Mikhail
Jones, Gareth A
Jurisic, Aleksandar
Algorithmic Algebraic Combinatorics and Gröbner Bases
title Algorithmic Algebraic Combinatorics and Gröbner Bases
title_full Algorithmic Algebraic Combinatorics and Gröbner Bases
title_fullStr Algorithmic Algebraic Combinatorics and Gröbner Bases
title_full_unstemmed Algorithmic Algebraic Combinatorics and Gröbner Bases
title_short Algorithmic Algebraic Combinatorics and Gröbner Bases
title_sort algorithmic algebraic combinatorics and gröbner bases
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-642-01960-9
http://cds.cern.ch/record/1488382
work_keys_str_mv AT klinmikhail algorithmicalgebraiccombinatoricsandgrobnerbases
AT jonesgaretha algorithmicalgebraiccombinatoricsandgrobnerbases
AT jurisicaleksandar algorithmicalgebraiccombinatoricsandgrobnerbases