Cargando…

Multi-Centered Invariants, Plethysm and Grassmannians

Motivated by multi-centered black hole solutions of Maxwell-Einstein theories of (super)gravity in D=4 space-time dimensions, we develop some general methods, that can be used to determine all homogeneous invariant polynomials on the irreducible (SL_h(p,R) x G4)-representation (p,R), where p denotes...

Descripción completa

Detalles Bibliográficos
Autores principales: Cacciatori, Sergio L., Marrani, Alessio, van Geemen, Bert
Lenguaje:eng
Publicado: 2012
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP02(2013)049
http://cds.cern.ch/record/1494392
Descripción
Sumario:Motivated by multi-centered black hole solutions of Maxwell-Einstein theories of (super)gravity in D=4 space-time dimensions, we develop some general methods, that can be used to determine all homogeneous invariant polynomials on the irreducible (SL_h(p,R) x G4)-representation (p,R), where p denotes the number of centers, and SL_h(p,R) is the "horizontal" symmetry of the system, acting upon the indices labelling the centers. The black hole electric and magnetic charges sit in the symplectic representation R of the generalized electric-magnetic (U-)duality group G4. We start with an algebraic approach based on classical invariant theory, using Schur polynomials and the Cauchy formula. Then, we perform a geometric analysis, involving Grassmannians, Pluecker coordinates, and exploiting Bott's Theorem. We focus on non-degenerate groups G4 "of type E7" relevant for (super)gravities whose (vector multiplets') scalar manifold is a symmetric space. In the triality-symmetric stu model of N=2 supergravity, we explicitly construct a basis for the 10 linearly independent degree-12 invariant polynomials of 3-centered black holes.