Cargando…

Stochastic Recursive Algorithms for Optimization: Simultaneous Perturbation Methods

Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fr...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhatnagar, S, Prasad, H L, Prashanth, L A
Lenguaje:eng
Publicado: Springer 2013
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-1-4471-4285-0
http://cds.cern.ch/record/1500138
_version_ 1780926846609653760
author Bhatnagar, S
Prasad, H L
Prashanth, L A
author_facet Bhatnagar, S
Prasad, H L
Prashanth, L A
author_sort Bhatnagar, S
collection CERN
description Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from similarly diverse backgrounds: workers in relevant areas of computer science, control engineering, management science, applied mathematics, industrial engineering and operations research will find the content of value.
id cern-1500138
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2013
publisher Springer
record_format invenio
spelling cern-15001382021-04-22T00:03:00Zdoi:10.1007/978-1-4471-4285-0http://cds.cern.ch/record/1500138engBhatnagar, SPrasad, H LPrashanth, L AStochastic Recursive Algorithms for Optimization: Simultaneous Perturbation MethodsEngineeringStochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from similarly diverse backgrounds: workers in relevant areas of computer science, control engineering, management science, applied mathematics, industrial engineering and operations research will find the content of value.Springeroai:cds.cern.ch:15001382013
spellingShingle Engineering
Bhatnagar, S
Prasad, H L
Prashanth, L A
Stochastic Recursive Algorithms for Optimization: Simultaneous Perturbation Methods
title Stochastic Recursive Algorithms for Optimization: Simultaneous Perturbation Methods
title_full Stochastic Recursive Algorithms for Optimization: Simultaneous Perturbation Methods
title_fullStr Stochastic Recursive Algorithms for Optimization: Simultaneous Perturbation Methods
title_full_unstemmed Stochastic Recursive Algorithms for Optimization: Simultaneous Perturbation Methods
title_short Stochastic Recursive Algorithms for Optimization: Simultaneous Perturbation Methods
title_sort stochastic recursive algorithms for optimization: simultaneous perturbation methods
topic Engineering
url https://dx.doi.org/10.1007/978-1-4471-4285-0
http://cds.cern.ch/record/1500138
work_keys_str_mv AT bhatnagars stochasticrecursivealgorithmsforoptimizationsimultaneousperturbationmethods
AT prasadhl stochasticrecursivealgorithmsforoptimizationsimultaneousperturbationmethods
AT prashanthla stochasticrecursivealgorithmsforoptimizationsimultaneousperturbationmethods